rf24-pio/RF24.cpp
Greg Copeland 158164746b Adds explicit CRC width and PA level. Changes hardware initialization
order to minimize noisy/false message reception. Removed begin call
from constructor as begin now has delay which creates timer race
initialization. The delay exists to allow for power on/reset radio
settling which can otherwise prevent CONFIG bits from holding. Added a
method to allow CRC hardware validation to be disabled. This is a
requirement for various promiscuous listening RF applications. Setting
CRC width now forces CRC hardware validation enable.
2011-07-18 15:37:30 -05:00

848 lines
21 KiB
C++

/*
Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
#include <WProgram.h>
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
#undef SERIAL_DEBUG
#ifdef SERIAL_DEBUG
#define IF_SERIAL_DEBUG(x) (x)
#else
#define IF_SERIAL_DEBUG(x)
#endif
// Avoid spurious warnings
#undef PROGMEM
#define PROGMEM __attribute__(( section(".progmem.data") ))
#undef PSTR
#define PSTR(s) (__extension__({static prog_char __c[] PROGMEM = (s); &__c[0];}))
/******************************************************************/
void RF24::csn(const int mode) const
{
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
SPI.setClockDivider(SPI_CLOCK_DIV2);
digitalWrite(csn_pin,mode);
}
/******************************************************************/
void RF24::ce(const int level) const
{
digitalWrite(ce_pin,level);
}
/******************************************************************/
uint8_t RF24::read_register(const uint8_t reg, uint8_t* buf, uint8_t len) const
{
uint8_t status;
csn(LOW);
status = SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) );
while ( len-- )
*buf++ = SPI.transfer(0xff);
csn(HIGH);
return status;
}
/******************************************************************/
uint8_t RF24::read_register(const uint8_t reg) const
{
csn(LOW);
SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) );
uint8_t result = SPI.transfer(0xff);
csn(HIGH);
return result;
}
/******************************************************************/
uint8_t RF24::write_register(const uint8_t reg, const uint8_t* buf, uint8_t len) const
{
uint8_t status;
csn(LOW);
status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) );
while ( len-- )
SPI.transfer(*buf++);
csn(HIGH);
return status;
}
/******************************************************************/
uint8_t RF24::write_register(const uint8_t reg, const uint8_t value) const
{
uint8_t status;
IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\n\r"),reg,value));
csn(LOW);
status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) );
SPI.transfer(value);
csn(HIGH);
return status;
}
/******************************************************************/
uint8_t RF24::write_payload(const void* buf, uint8_t len)
{
uint8_t status;
const uint8_t* current = (const uint8_t*)buf;
csn(LOW);
status = SPI.transfer( W_TX_PAYLOAD );
uint8_t data_len = min(len,payload_size);
uint8_t blank_len = payload_size - data_len;
while ( data_len-- )
SPI.transfer(*current++);
while ( blank_len-- )
SPI.transfer(0);
csn(HIGH);
return status;
}
/******************************************************************/
uint8_t RF24::read_payload(void* buf, uint8_t len)
{
uint8_t status;
uint8_t* current = (uint8_t*)buf;
csn(LOW);
status = SPI.transfer( R_RX_PAYLOAD );
uint8_t data_len = min(len,payload_size);
uint8_t blank_len = payload_size - data_len;
while ( data_len-- )
*current++ = SPI.transfer(0xff);
while ( blank_len-- )
SPI.transfer(0xff);
csn(HIGH);
return status;
}
/******************************************************************/
uint8_t RF24::flush_rx(void) const
{
uint8_t status;
csn(LOW);
status = SPI.transfer( FLUSH_RX );
csn(HIGH);
return status;
}
/******************************************************************/
uint8_t RF24::flush_tx(void) const
{
uint8_t status;
csn(LOW);
status = SPI.transfer( FLUSH_TX );
csn(HIGH);
return status;
}
/******************************************************************/
uint8_t RF24::get_status(void) const
{
uint8_t status;
csn(LOW);
status = SPI.transfer( NOP );
csn(HIGH);
return status;
}
/******************************************************************/
void RF24::print_status(uint8_t status) const
{
printf_P(PSTR("STATUS=%02x: RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\n\r"),
status,
(status & _BV(RX_DR))?1:0,
(status & _BV(TX_DS))?1:0,
(status & _BV(MAX_RT))?1:0,
((status >> RX_P_NO) & B111),
(status & _BV(TX_FULL))?1:0
);
}
/******************************************************************/
void RF24::print_observe_tx(uint8_t value) const
{
printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\n\r"),
value,
(value >> PLOS_CNT) & B1111,
(value >> ARC_CNT) & B1111
);
}
/******************************************************************/
RF24::RF24(const uint8_t _cepin, const uint8_t _cspin):
ce_pin(_cepin), csn_pin(_cspin), wide_band(true), p_variant(false),
payload_size(32), ack_payload_available(false)
{
}
/******************************************************************/
void RF24::setChannel(const uint8_t channel)
{
if( wide_band ) {
write_register(RF_CH,min(channel,127));
} else {
write_register(RF_CH,min(channel,127));
}
}
/******************************************************************/
void RF24::setPayloadSize(const uint8_t size)
{
payload_size = min(size,32);
}
/******************************************************************/
uint8_t RF24::getPayloadSize(void)
{
return payload_size;
}
/******************************************************************/
void RF24::printDetails(void) const
{
uint8_t buffer[5];
uint8_t status = read_register(RX_ADDR_P0,buffer,5);
print_status(status);
printf_P(PSTR("RX_ADDR_P0 = 0x"));
uint8_t *bufptr = buffer + 5;
while( bufptr-- > buffer )
printf_P(PSTR("%02x"),*bufptr);
printf_P(PSTR("\n\r"));
status = read_register(RX_ADDR_P1,buffer,5);
printf_P(PSTR("RX_ADDR_P1 = 0x"));
bufptr = buffer + 5;
while( bufptr-- > buffer )
printf_P(PSTR("%02x"),*bufptr);
printf_P(PSTR("\n\r"));
status = read_register(RX_ADDR_P2,buffer,1);
printf_P(PSTR("RX_ADDR_P2 = 0x%02x"),*buffer);
printf_P(PSTR("\n\r"));
status = read_register(RX_ADDR_P3,buffer,1);
printf_P(PSTR("RX_ADDR_P3 = 0x%02x"),*buffer);
printf_P(PSTR("\n\r"));
status = read_register(RX_ADDR_P4,buffer,1);
printf_P(PSTR("RX_ADDR_P4 = 0x%02x"),*buffer);
printf_P(PSTR("\n\r"));
status = read_register(RX_ADDR_P5,buffer,1);
printf_P(PSTR("RX_ADDR_P5 = 0x%02x"),*buffer);
printf_P(PSTR("\n\r"));
status = read_register(TX_ADDR,buffer,5);
printf_P(PSTR("TX_ADDR = 0x"));
bufptr = buffer + 5;
while( bufptr-- > buffer )
printf_P(PSTR("%02x"),*bufptr);
printf_P(PSTR("\n\r"));
status = read_register(RX_PW_P0,buffer,1);
printf_P(PSTR("RX_PW_P0 = 0x%02x\n\r"),*buffer);
status = read_register(RX_PW_P1,buffer,1);
printf_P(PSTR("RX_PW_P1 = 0x%02x\n\r"),*buffer);
read_register(EN_AA,buffer,1);
printf_P(PSTR("EN_AA = 0x%02x\n\r"),*buffer);
read_register(EN_RXADDR,buffer,1);
printf_P(PSTR("EN_RXADDR = 0x%02x\n\r"),*buffer);
read_register(RF_CH,buffer,1);
printf_P(PSTR("RF_CH = 0x%02x\n\r"),*buffer);
read_register(RF_SETUP,buffer,1);
printf_P(PSTR("RF_SETUP = 0x%02x (data rate: %d)\n\r"),*buffer,getDataRate());
printf_P(PSTR("Hardware; isPVariant: %d\n\r"),isPVariant());
read_register(CONFIG,buffer,1);
printf_P(PSTR("CONFIG = 0x%02x (CRC enable: %d; CRC16: %d)\n\r"),
*buffer,(*buffer)&_BV(EN_CRC)?1:0,
(*buffer)&_BV(CRCO)?1:0);
}
/******************************************************************/
void RF24::begin(void)
{
// Initialize pins
pinMode(ce_pin,OUTPUT);
pinMode(csn_pin,OUTPUT);
// Initialize SPI bus
// Minimum ideal SPI bus speed is 2x data rate
// If we assume 2Mbs data rate and 16Mhz clock, a
// divider of 4 is the minimum we want.
// CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz
// We'll use a divider of 2 which will work up to
// MCU speeds of 20Mhz.
// CLK:BUS 8Mhz:4Mhz, 16Mhz:8Mhz, or 20Mhz:10Mhz (max)
SPI.begin();
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
SPI.setClockDivider(SPI_CLOCK_DIV2);
ce(LOW);
csn(HIGH);
// Must allow the radio time to settle else configuration bits will not necessarily stick.
// This is actually only required following power up but some settling time also appears to
// be required after resets too. For full coverage, we'll always assume the worst.
// Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
// Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
// WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
delay( 5 ) ;
// Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
// WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
// sizes must never be used. See documentation for a more complete explanation.
write_register(SETUP_RETR,(B0100 << ARD) | (B1111 << ARC));
// Restore our default PA level
setPALevel( RF24_PA_MAX ) ;
// Determine if this is a p or non-p RF24 module and then
// reset our data rate back to default value. This works
// because a non-P variant won't allow the data rate to
// be set to 250Kbps.
if( setDataRate( RF24_250KBPS ) ) {
p_variant = true ;
}
setDataRate( RF24_2MBPS ) ;
// Initialize CRC and request 2-byte (16bit) CRC
setCRCLength( RF24_CRC_16 ) ;
// Reset current status
// Notice reset and flush is the last thing we do
write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
// Flush buffers
flush_rx();
flush_tx();
}
/******************************************************************/
void RF24::startListening(void) const
{
write_register(CONFIG, read_register(CONFIG) | _BV(PWR_UP) | _BV(PRIM_RX));
write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
// Restore the pipe0 adddress
write_register(RX_ADDR_P0, reinterpret_cast<const uint8_t*>(&pipe0_reading_address), 5);
// Flush buffers
flush_rx();
// Go!
ce(HIGH);
// wait for the radio to come up (130us actually only needed)
delayMicroseconds(130);
}
/******************************************************************/
void RF24::stopListening(void) const
{
ce(LOW);
}
/******************************************************************/
void RF24::powerDown(void) const
{
write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP));
}
/******************************************************************/
boolean RF24::write( const void* buf, uint8_t len )
{
boolean result = false;
// Transmitter power-up
write_register(CONFIG, ( read_register(CONFIG) | _BV(PWR_UP) ) & ~_BV(PRIM_RX) );
delay(2);
// Send the payload
write_payload( buf, len );
// Allons!
ce(HIGH);
// IN the end, the send should be blocking. It comes back in 60ms worst case, or much faster
// if I tighted up the retry logic. (Default settings will be 1500us.
// Monitor the send
uint8_t observe_tx;
uint8_t status;
uint8_t retries = 255;
do
{
status = read_register(OBSERVE_TX,&observe_tx,1);
IF_SERIAL_DEBUG(Serial.print(status,HEX));
IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX));
if ( ! retries-- )
{
IF_SERIAL_DEBUG(printf("ABORTED: too many retries\n\r"));
break;
}
}
while( ! ( status & ( _BV(TX_DS) | _BV(MAX_RT) ) ) );
if ( status & _BV(TX_DS) )
result = true;
IF_SERIAL_DEBUG(Serial.print(result?"...OK.":"...Failed"));
ack_payload_available = ( status & _BV(RX_DR) );
if ( ack_payload_available )
{
write_register(STATUS,_BV(RX_DR) );
ack_payload_length = read_payload_length();
IF_SERIAL_DEBUG(Serial.print("[AckPacket]/"));
IF_SERIAL_DEBUG(Serial.println(ack_payload_length,DEC));
}
// Yay, we are done.
ce(LOW);
// Power down
write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP));
// Reset current status
write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
// Flush buffers
flush_tx();
return result;
}
/******************************************************************/
uint8_t RF24::read_payload_length(void)
{
uint8_t result = 0;
csn(LOW);
SPI.transfer( R_RX_PL_WID );
result = SPI.transfer(0xff);
csn(HIGH);
return result;
}
/******************************************************************/
boolean RF24::available(void) const
{
return available(NULL);
}
/******************************************************************/
boolean RF24::available(uint8_t* pipe_num) const
{
uint8_t status = get_status();
IF_SERIAL_DEBUG(print_status(status));
boolean result = ( status & _BV(RX_DR) );
if (result)
{
// If the caller wants the pipe number, include that
if ( pipe_num )
*pipe_num = ( status >> RX_P_NO ) & B111;
// Clear the status bit
// ??? Should this REALLY be cleared now? Or wait until we
// actually READ the payload?
write_register(STATUS,_BV(RX_DR) );
// Handle ack payload receipt
if ( status & _BV(TX_DS) )
{
write_register(STATUS,_BV(TX_DS));
}
}
return result;
}
/******************************************************************/
boolean RF24::read( void* buf, uint8_t len )
{
// was this the last of the data available?
boolean result = false;
// Fetch the payload
read_payload( buf, len );
uint8_t fifo_status;
read_register(FIFO_STATUS,&fifo_status,1);
if ( fifo_status & _BV(RX_EMPTY) )
result = true;
return result;
}
/******************************************************************/
void RF24::openWritingPipe(uint64_t value)
{
// Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
// expects it LSB first too, so we're good.
write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), 5);
write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), 5);
write_register(RX_PW_P0,min(payload_size,32));
}
/******************************************************************/
void RF24::openReadingPipe(const uint8_t child, const uint64_t address)
{
const uint8_t child_pipe[] = {
RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 };
const uint8_t child_payload_size[] = {
RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5 };
const uint8_t child_pipe_enable[] = {
ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5 };
// If this is pipe 0, cache the address. This is needed because
// openWritingPipe() will overwrite the pipe 0 address, so
// startListening() will have to restore it.
if (child == 0)
pipe0_reading_address = address;
if (child < 6)
{
// For pipes 2-5, only write the LSB
if ( child < 2 )
write_register(child_pipe[child], reinterpret_cast<const uint8_t*>(&address), 5);
else
write_register(child_pipe[child], reinterpret_cast<const uint8_t*>(&address), 1);
write_register(child_payload_size[child],payload_size);
// Note this is kind of an inefficient way to set up these enable bits, but I thought it made
// the calling code more simple
uint8_t en_rx;
read_register(EN_RXADDR,&en_rx,1);
en_rx |= _BV(child_pipe_enable[child]);
write_register(EN_RXADDR,en_rx);
}
}
/******************************************************************/
void RF24::toggle_features(void) const
{
csn(LOW);
SPI.transfer( ACTIVATE );
SPI.transfer( 0x73 );
csn(HIGH);
}
/******************************************************************/
void RF24::enableAckPayload(void) const
{
//
// enable ack payload and dynamic payload features
//
write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) );
// If it didn't work, the features are not enabled
if ( ! read_register(FEATURE) )
{
// So enable them and try again
toggle_features();
write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) );
}
IF_SERIAL_DEBUG(printf("FEATURE=%i\n\r",read_register(FEATURE)));
//
// Enable dynamic payload on pipe 0
//
write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0));
}
/******************************************************************/
void RF24::writeAckPayload(const uint8_t pipe, const void* buf, uint8_t len) const
{
const uint8_t* current = (const uint8_t*)buf;
csn(LOW);
SPI.transfer( W_ACK_PAYLOAD | ( pipe & B111 ) );
uint8_t data_len = min(len,32);
while ( data_len-- )
SPI.transfer(*current++);
csn(HIGH);
}
/******************************************************************/
boolean RF24::isAckPayloadAvailable(void)
{
boolean result = ack_payload_available;
ack_payload_available = false;
return result;
}
/******************************************************************/
boolean RF24::isPVariant(void) const {
return p_variant ;
}
/******************************************************************/
void RF24::setAutoAck(const bool enable) const
{
if ( enable )
write_register(EN_AA, B111111);
else
write_register(EN_AA, 0);
}
/******************************************************************/
void RF24::setAutoAck( const uint8_t pipe, const bool enable ) const
{
uint8_t en_aa = read_register( EN_AA ) ;
if( enable ) {
en_aa |= _BV(pipe) ;
} else {
en_aa &= ~_BV(pipe) ;
}
write_register( EN_AA, en_aa ) ;
}
/******************************************************************/
boolean RF24::testCarrier(void) const
{
return ( read_register(CD) & 1 );
}
/******************************************************************/
boolean RF24::testRPD(void) const
{
return ( read_register(RPD) & 1 ) ;
}
/******************************************************************/
void RF24::setPALevel(const rf24_pa_dbm_e level) const
{
uint8_t setup = read_register(RF_SETUP) ;
setup &= ~(_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
switch( level )
{
case RF24_PA_MAX:
setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
break ;
case RF24_PA_HIGH:
setup |= _BV(RF_PWR_HIGH) ;
break ;
case RF24_PA_LOW:
setup |= _BV(RF_PWR_LOW) ;
break ;
case RF24_PA_MIN:
break ;
case RF24_PA_ERROR:
// On error, go to maximum PA
setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
break ;
}
write_register( RF_SETUP, setup ) ;
}
/******************************************************************/
rf24_pa_dbm_e RF24::getPALevel(void) const
{
rf24_pa_dbm_e result = RF24_PA_ERROR ;
uint8_t power = read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
switch( power )
{
case (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)):
result = RF24_PA_MAX ;
break ;
case _BV(RF_PWR_HIGH):
result = RF24_PA_HIGH ;
break ;
case _BV(RF_PWR_LOW):
result = RF24_PA_LOW ;
break ;
default:
result = RF24_PA_MIN ;
break ;
}
return result ;
}
/******************************************************************/
boolean RF24::setDataRate(const rf24_datarate_e speed)
{
uint8_t setup = read_register(RF_SETUP) ;
// HIGH and LOW '00' is 1Mbs - our default
wide_band = false ;
setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ;
if( speed == RF24_250KBPS )
{
// Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
// Making it '10'.
wide_band = false ;
setup |= _BV( RF_DR_LOW ) ;
}
else
{
// Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
// Making it '01'
if ( speed == RF24_2MBPS )
{
wide_band = true ;
setup |= _BV(RF_DR_HIGH);
} else {
// 1Mbs
wide_band = false ;
}
}
write_register(RF_SETUP,setup);
// Verify our result
setup = read_register(RF_SETUP) ;
if( setup == setup ) {
return true ;
}
wide_band = false ;
return false ;
}
/******************************************************************/
rf24_datarate_e RF24::getDataRate( void ) const {
rf24_datarate_e result ;
uint8_t setup = read_register(RF_SETUP) ;
// Order matters in our case below
switch( setup & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ) {
case _BV(RF_DR_LOW):
// '10' = 250KBPS
result = RF24_250KBPS ;
break ;
case _BV(RF_DR_HIGH):
// '01' = 2MBPS
result = RF24_2MBPS ;
break ;
default:
// '00' = 1MBPS
result = RF24_1MBPS ;
break ;
}
return result ;
}
/******************************************************************/
void RF24::setCRCLength(const rf24_crclength_e length) const
{
uint8_t config = read_register(CONFIG) & ~_BV(CRCO) ;
// Always make sure CRC hardware validation is actually on
config |= _BV(EN_CRC) ;
// Now config 8 or 16 bit CRCs - only 16bit need be turned on
// 8b is the default.
if( length == RF24_CRC_16 ) {
config |= _BV( CRCO ) ;
}
write_register( CONFIG, config ) ;
}
/******************************************************************/
void RF24::disableCRC( void ) const
{
uint8_t disable = read_register(CONFIG) & ~_BV(EN_CRC) ;
write_register( CONFIG, disable ) ;
}
// vim:ai:cin:sts=2 sw=2 ft=cpp