158164746b
order to minimize noisy/false message reception. Removed begin call from constructor as begin now has delay which creates timer race initialization. The delay exists to allow for power on/reset radio settling which can otherwise prevent CONFIG bits from holding. Added a method to allow CRC hardware validation to be disabled. This is a requirement for various promiscuous listening RF applications. Setting CRC width now forces CRC hardware validation enable.
848 lines
21 KiB
C++
848 lines
21 KiB
C++
/*
|
|
Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
version 2 as published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <WProgram.h>
|
|
#include <SPI.h>
|
|
#include "nRF24L01.h"
|
|
#include "RF24.h"
|
|
|
|
#undef SERIAL_DEBUG
|
|
#ifdef SERIAL_DEBUG
|
|
#define IF_SERIAL_DEBUG(x) (x)
|
|
#else
|
|
#define IF_SERIAL_DEBUG(x)
|
|
#endif
|
|
|
|
// Avoid spurious warnings
|
|
#undef PROGMEM
|
|
#define PROGMEM __attribute__(( section(".progmem.data") ))
|
|
#undef PSTR
|
|
#define PSTR(s) (__extension__({static prog_char __c[] PROGMEM = (s); &__c[0];}))
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::csn(const int mode) const
|
|
{
|
|
SPI.setBitOrder(MSBFIRST);
|
|
SPI.setDataMode(SPI_MODE0);
|
|
SPI.setClockDivider(SPI_CLOCK_DIV2);
|
|
digitalWrite(csn_pin,mode);
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::ce(const int level) const
|
|
{
|
|
digitalWrite(ce_pin,level);
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
uint8_t RF24::read_register(const uint8_t reg, uint8_t* buf, uint8_t len) const
|
|
{
|
|
uint8_t status;
|
|
|
|
csn(LOW);
|
|
status = SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) );
|
|
while ( len-- )
|
|
*buf++ = SPI.transfer(0xff);
|
|
|
|
csn(HIGH);
|
|
|
|
return status;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
uint8_t RF24::read_register(const uint8_t reg) const
|
|
{
|
|
csn(LOW);
|
|
SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) );
|
|
uint8_t result = SPI.transfer(0xff);
|
|
|
|
csn(HIGH);
|
|
return result;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
uint8_t RF24::write_register(const uint8_t reg, const uint8_t* buf, uint8_t len) const
|
|
{
|
|
uint8_t status;
|
|
|
|
csn(LOW);
|
|
status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) );
|
|
while ( len-- )
|
|
SPI.transfer(*buf++);
|
|
|
|
csn(HIGH);
|
|
|
|
return status;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
uint8_t RF24::write_register(const uint8_t reg, const uint8_t value) const
|
|
{
|
|
uint8_t status;
|
|
|
|
IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\n\r"),reg,value));
|
|
|
|
csn(LOW);
|
|
status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) );
|
|
SPI.transfer(value);
|
|
csn(HIGH);
|
|
|
|
return status;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
uint8_t RF24::write_payload(const void* buf, uint8_t len)
|
|
{
|
|
uint8_t status;
|
|
|
|
const uint8_t* current = (const uint8_t*)buf;
|
|
|
|
csn(LOW);
|
|
status = SPI.transfer( W_TX_PAYLOAD );
|
|
uint8_t data_len = min(len,payload_size);
|
|
uint8_t blank_len = payload_size - data_len;
|
|
while ( data_len-- )
|
|
SPI.transfer(*current++);
|
|
while ( blank_len-- )
|
|
SPI.transfer(0);
|
|
|
|
csn(HIGH);
|
|
|
|
return status;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
uint8_t RF24::read_payload(void* buf, uint8_t len)
|
|
{
|
|
uint8_t status;
|
|
uint8_t* current = (uint8_t*)buf;
|
|
|
|
csn(LOW);
|
|
status = SPI.transfer( R_RX_PAYLOAD );
|
|
uint8_t data_len = min(len,payload_size);
|
|
uint8_t blank_len = payload_size - data_len;
|
|
while ( data_len-- )
|
|
*current++ = SPI.transfer(0xff);
|
|
while ( blank_len-- )
|
|
SPI.transfer(0xff);
|
|
csn(HIGH);
|
|
|
|
return status;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
uint8_t RF24::flush_rx(void) const
|
|
{
|
|
uint8_t status;
|
|
|
|
csn(LOW);
|
|
status = SPI.transfer( FLUSH_RX );
|
|
csn(HIGH);
|
|
|
|
return status;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
uint8_t RF24::flush_tx(void) const
|
|
{
|
|
uint8_t status;
|
|
|
|
csn(LOW);
|
|
status = SPI.transfer( FLUSH_TX );
|
|
csn(HIGH);
|
|
|
|
return status;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
uint8_t RF24::get_status(void) const
|
|
{
|
|
uint8_t status;
|
|
|
|
csn(LOW);
|
|
status = SPI.transfer( NOP );
|
|
csn(HIGH);
|
|
|
|
return status;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::print_status(uint8_t status) const
|
|
{
|
|
printf_P(PSTR("STATUS=%02x: RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\n\r"),
|
|
status,
|
|
(status & _BV(RX_DR))?1:0,
|
|
(status & _BV(TX_DS))?1:0,
|
|
(status & _BV(MAX_RT))?1:0,
|
|
((status >> RX_P_NO) & B111),
|
|
(status & _BV(TX_FULL))?1:0
|
|
);
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::print_observe_tx(uint8_t value) const
|
|
{
|
|
printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\n\r"),
|
|
value,
|
|
(value >> PLOS_CNT) & B1111,
|
|
(value >> ARC_CNT) & B1111
|
|
);
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
RF24::RF24(const uint8_t _cepin, const uint8_t _cspin):
|
|
ce_pin(_cepin), csn_pin(_cspin), wide_band(true), p_variant(false),
|
|
payload_size(32), ack_payload_available(false)
|
|
{
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::setChannel(const uint8_t channel)
|
|
{
|
|
if( wide_band ) {
|
|
write_register(RF_CH,min(channel,127));
|
|
} else {
|
|
write_register(RF_CH,min(channel,127));
|
|
}
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::setPayloadSize(const uint8_t size)
|
|
{
|
|
payload_size = min(size,32);
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
uint8_t RF24::getPayloadSize(void)
|
|
{
|
|
return payload_size;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::printDetails(void) const
|
|
{
|
|
uint8_t buffer[5];
|
|
uint8_t status = read_register(RX_ADDR_P0,buffer,5);
|
|
print_status(status);
|
|
printf_P(PSTR("RX_ADDR_P0 = 0x"));
|
|
uint8_t *bufptr = buffer + 5;
|
|
while( bufptr-- > buffer )
|
|
printf_P(PSTR("%02x"),*bufptr);
|
|
printf_P(PSTR("\n\r"));
|
|
|
|
status = read_register(RX_ADDR_P1,buffer,5);
|
|
printf_P(PSTR("RX_ADDR_P1 = 0x"));
|
|
bufptr = buffer + 5;
|
|
while( bufptr-- > buffer )
|
|
printf_P(PSTR("%02x"),*bufptr);
|
|
printf_P(PSTR("\n\r"));
|
|
|
|
status = read_register(RX_ADDR_P2,buffer,1);
|
|
printf_P(PSTR("RX_ADDR_P2 = 0x%02x"),*buffer);
|
|
printf_P(PSTR("\n\r"));
|
|
|
|
status = read_register(RX_ADDR_P3,buffer,1);
|
|
printf_P(PSTR("RX_ADDR_P3 = 0x%02x"),*buffer);
|
|
printf_P(PSTR("\n\r"));
|
|
|
|
status = read_register(RX_ADDR_P4,buffer,1);
|
|
printf_P(PSTR("RX_ADDR_P4 = 0x%02x"),*buffer);
|
|
printf_P(PSTR("\n\r"));
|
|
|
|
status = read_register(RX_ADDR_P5,buffer,1);
|
|
printf_P(PSTR("RX_ADDR_P5 = 0x%02x"),*buffer);
|
|
printf_P(PSTR("\n\r"));
|
|
|
|
status = read_register(TX_ADDR,buffer,5);
|
|
printf_P(PSTR("TX_ADDR = 0x"));
|
|
bufptr = buffer + 5;
|
|
while( bufptr-- > buffer )
|
|
printf_P(PSTR("%02x"),*bufptr);
|
|
printf_P(PSTR("\n\r"));
|
|
|
|
status = read_register(RX_PW_P0,buffer,1);
|
|
printf_P(PSTR("RX_PW_P0 = 0x%02x\n\r"),*buffer);
|
|
|
|
status = read_register(RX_PW_P1,buffer,1);
|
|
printf_P(PSTR("RX_PW_P1 = 0x%02x\n\r"),*buffer);
|
|
|
|
read_register(EN_AA,buffer,1);
|
|
printf_P(PSTR("EN_AA = 0x%02x\n\r"),*buffer);
|
|
|
|
read_register(EN_RXADDR,buffer,1);
|
|
printf_P(PSTR("EN_RXADDR = 0x%02x\n\r"),*buffer);
|
|
|
|
read_register(RF_CH,buffer,1);
|
|
printf_P(PSTR("RF_CH = 0x%02x\n\r"),*buffer);
|
|
|
|
read_register(RF_SETUP,buffer,1);
|
|
printf_P(PSTR("RF_SETUP = 0x%02x (data rate: %d)\n\r"),*buffer,getDataRate());
|
|
printf_P(PSTR("Hardware; isPVariant: %d\n\r"),isPVariant());
|
|
|
|
read_register(CONFIG,buffer,1);
|
|
printf_P(PSTR("CONFIG = 0x%02x (CRC enable: %d; CRC16: %d)\n\r"),
|
|
*buffer,(*buffer)&_BV(EN_CRC)?1:0,
|
|
(*buffer)&_BV(CRCO)?1:0);
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::begin(void)
|
|
{
|
|
// Initialize pins
|
|
pinMode(ce_pin,OUTPUT);
|
|
pinMode(csn_pin,OUTPUT);
|
|
|
|
// Initialize SPI bus
|
|
// Minimum ideal SPI bus speed is 2x data rate
|
|
// If we assume 2Mbs data rate and 16Mhz clock, a
|
|
// divider of 4 is the minimum we want.
|
|
// CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz
|
|
// We'll use a divider of 2 which will work up to
|
|
// MCU speeds of 20Mhz.
|
|
// CLK:BUS 8Mhz:4Mhz, 16Mhz:8Mhz, or 20Mhz:10Mhz (max)
|
|
SPI.begin();
|
|
SPI.setBitOrder(MSBFIRST);
|
|
SPI.setDataMode(SPI_MODE0);
|
|
SPI.setClockDivider(SPI_CLOCK_DIV2);
|
|
|
|
ce(LOW);
|
|
csn(HIGH);
|
|
|
|
// Must allow the radio time to settle else configuration bits will not necessarily stick.
|
|
// This is actually only required following power up but some settling time also appears to
|
|
// be required after resets too. For full coverage, we'll always assume the worst.
|
|
// Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
|
|
// Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
|
|
// WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
|
|
delay( 5 ) ;
|
|
|
|
// Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
|
|
// WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
|
|
// sizes must never be used. See documentation for a more complete explanation.
|
|
write_register(SETUP_RETR,(B0100 << ARD) | (B1111 << ARC));
|
|
|
|
// Restore our default PA level
|
|
setPALevel( RF24_PA_MAX ) ;
|
|
|
|
// Determine if this is a p or non-p RF24 module and then
|
|
// reset our data rate back to default value. This works
|
|
// because a non-P variant won't allow the data rate to
|
|
// be set to 250Kbps.
|
|
if( setDataRate( RF24_250KBPS ) ) {
|
|
p_variant = true ;
|
|
}
|
|
setDataRate( RF24_2MBPS ) ;
|
|
|
|
// Initialize CRC and request 2-byte (16bit) CRC
|
|
setCRCLength( RF24_CRC_16 ) ;
|
|
|
|
// Reset current status
|
|
// Notice reset and flush is the last thing we do
|
|
write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
|
|
|
|
// Flush buffers
|
|
flush_rx();
|
|
flush_tx();
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::startListening(void) const
|
|
{
|
|
write_register(CONFIG, read_register(CONFIG) | _BV(PWR_UP) | _BV(PRIM_RX));
|
|
write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
|
|
|
|
// Restore the pipe0 adddress
|
|
write_register(RX_ADDR_P0, reinterpret_cast<const uint8_t*>(&pipe0_reading_address), 5);
|
|
|
|
// Flush buffers
|
|
flush_rx();
|
|
|
|
// Go!
|
|
ce(HIGH);
|
|
|
|
// wait for the radio to come up (130us actually only needed)
|
|
delayMicroseconds(130);
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::stopListening(void) const
|
|
{
|
|
ce(LOW);
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::powerDown(void) const
|
|
{
|
|
write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP));
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
boolean RF24::write( const void* buf, uint8_t len )
|
|
{
|
|
boolean result = false;
|
|
|
|
// Transmitter power-up
|
|
write_register(CONFIG, ( read_register(CONFIG) | _BV(PWR_UP) ) & ~_BV(PRIM_RX) );
|
|
delay(2);
|
|
|
|
// Send the payload
|
|
write_payload( buf, len );
|
|
|
|
// Allons!
|
|
ce(HIGH);
|
|
|
|
// IN the end, the send should be blocking. It comes back in 60ms worst case, or much faster
|
|
// if I tighted up the retry logic. (Default settings will be 1500us.
|
|
// Monitor the send
|
|
uint8_t observe_tx;
|
|
uint8_t status;
|
|
uint8_t retries = 255;
|
|
do
|
|
{
|
|
status = read_register(OBSERVE_TX,&observe_tx,1);
|
|
IF_SERIAL_DEBUG(Serial.print(status,HEX));
|
|
IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX));
|
|
if ( ! retries-- )
|
|
{
|
|
IF_SERIAL_DEBUG(printf("ABORTED: too many retries\n\r"));
|
|
break;
|
|
}
|
|
}
|
|
while( ! ( status & ( _BV(TX_DS) | _BV(MAX_RT) ) ) );
|
|
|
|
if ( status & _BV(TX_DS) )
|
|
result = true;
|
|
|
|
IF_SERIAL_DEBUG(Serial.print(result?"...OK.":"...Failed"));
|
|
|
|
ack_payload_available = ( status & _BV(RX_DR) );
|
|
if ( ack_payload_available )
|
|
{
|
|
write_register(STATUS,_BV(RX_DR) );
|
|
ack_payload_length = read_payload_length();
|
|
IF_SERIAL_DEBUG(Serial.print("[AckPacket]/"));
|
|
IF_SERIAL_DEBUG(Serial.println(ack_payload_length,DEC));
|
|
}
|
|
|
|
// Yay, we are done.
|
|
ce(LOW);
|
|
|
|
// Power down
|
|
write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP));
|
|
|
|
// Reset current status
|
|
write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
|
|
|
|
// Flush buffers
|
|
flush_tx();
|
|
|
|
return result;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
uint8_t RF24::read_payload_length(void)
|
|
{
|
|
uint8_t result = 0;
|
|
|
|
csn(LOW);
|
|
SPI.transfer( R_RX_PL_WID );
|
|
result = SPI.transfer(0xff);
|
|
csn(HIGH);
|
|
|
|
return result;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
boolean RF24::available(void) const
|
|
{
|
|
return available(NULL);
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
boolean RF24::available(uint8_t* pipe_num) const
|
|
{
|
|
uint8_t status = get_status();
|
|
IF_SERIAL_DEBUG(print_status(status));
|
|
boolean result = ( status & _BV(RX_DR) );
|
|
|
|
if (result)
|
|
{
|
|
// If the caller wants the pipe number, include that
|
|
if ( pipe_num )
|
|
*pipe_num = ( status >> RX_P_NO ) & B111;
|
|
|
|
// Clear the status bit
|
|
|
|
// ??? Should this REALLY be cleared now? Or wait until we
|
|
// actually READ the payload?
|
|
|
|
write_register(STATUS,_BV(RX_DR) );
|
|
|
|
// Handle ack payload receipt
|
|
if ( status & _BV(TX_DS) )
|
|
{
|
|
write_register(STATUS,_BV(TX_DS));
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
boolean RF24::read( void* buf, uint8_t len )
|
|
{
|
|
// was this the last of the data available?
|
|
boolean result = false;
|
|
|
|
// Fetch the payload
|
|
read_payload( buf, len );
|
|
|
|
uint8_t fifo_status;
|
|
read_register(FIFO_STATUS,&fifo_status,1);
|
|
if ( fifo_status & _BV(RX_EMPTY) )
|
|
result = true;
|
|
|
|
return result;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::openWritingPipe(uint64_t value)
|
|
{
|
|
// Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
|
|
// expects it LSB first too, so we're good.
|
|
|
|
write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), 5);
|
|
write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), 5);
|
|
write_register(RX_PW_P0,min(payload_size,32));
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::openReadingPipe(const uint8_t child, const uint64_t address)
|
|
{
|
|
const uint8_t child_pipe[] = {
|
|
RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 };
|
|
const uint8_t child_payload_size[] = {
|
|
RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5 };
|
|
const uint8_t child_pipe_enable[] = {
|
|
ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5 };
|
|
|
|
// If this is pipe 0, cache the address. This is needed because
|
|
// openWritingPipe() will overwrite the pipe 0 address, so
|
|
// startListening() will have to restore it.
|
|
if (child == 0)
|
|
pipe0_reading_address = address;
|
|
|
|
if (child < 6)
|
|
{
|
|
// For pipes 2-5, only write the LSB
|
|
if ( child < 2 )
|
|
write_register(child_pipe[child], reinterpret_cast<const uint8_t*>(&address), 5);
|
|
else
|
|
write_register(child_pipe[child], reinterpret_cast<const uint8_t*>(&address), 1);
|
|
|
|
write_register(child_payload_size[child],payload_size);
|
|
|
|
// Note this is kind of an inefficient way to set up these enable bits, but I thought it made
|
|
// the calling code more simple
|
|
uint8_t en_rx;
|
|
read_register(EN_RXADDR,&en_rx,1);
|
|
en_rx |= _BV(child_pipe_enable[child]);
|
|
write_register(EN_RXADDR,en_rx);
|
|
}
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::toggle_features(void) const
|
|
{
|
|
csn(LOW);
|
|
SPI.transfer( ACTIVATE );
|
|
SPI.transfer( 0x73 );
|
|
csn(HIGH);
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::enableAckPayload(void) const
|
|
{
|
|
//
|
|
// enable ack payload and dynamic payload features
|
|
//
|
|
|
|
write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) );
|
|
|
|
// If it didn't work, the features are not enabled
|
|
if ( ! read_register(FEATURE) )
|
|
{
|
|
// So enable them and try again
|
|
toggle_features();
|
|
write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) );
|
|
}
|
|
|
|
IF_SERIAL_DEBUG(printf("FEATURE=%i\n\r",read_register(FEATURE)));
|
|
|
|
//
|
|
// Enable dynamic payload on pipe 0
|
|
//
|
|
|
|
write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0));
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::writeAckPayload(const uint8_t pipe, const void* buf, uint8_t len) const
|
|
{
|
|
const uint8_t* current = (const uint8_t*)buf;
|
|
|
|
csn(LOW);
|
|
SPI.transfer( W_ACK_PAYLOAD | ( pipe & B111 ) );
|
|
uint8_t data_len = min(len,32);
|
|
while ( data_len-- )
|
|
SPI.transfer(*current++);
|
|
|
|
csn(HIGH);
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
boolean RF24::isAckPayloadAvailable(void)
|
|
{
|
|
boolean result = ack_payload_available;
|
|
ack_payload_available = false;
|
|
return result;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
boolean RF24::isPVariant(void) const {
|
|
return p_variant ;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::setAutoAck(const bool enable) const
|
|
{
|
|
if ( enable )
|
|
write_register(EN_AA, B111111);
|
|
else
|
|
write_register(EN_AA, 0);
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::setAutoAck( const uint8_t pipe, const bool enable ) const
|
|
{
|
|
uint8_t en_aa = read_register( EN_AA ) ;
|
|
if( enable ) {
|
|
en_aa |= _BV(pipe) ;
|
|
} else {
|
|
en_aa &= ~_BV(pipe) ;
|
|
}
|
|
write_register( EN_AA, en_aa ) ;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
boolean RF24::testCarrier(void) const
|
|
{
|
|
return ( read_register(CD) & 1 );
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
boolean RF24::testRPD(void) const
|
|
{
|
|
return ( read_register(RPD) & 1 ) ;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::setPALevel(const rf24_pa_dbm_e level) const
|
|
{
|
|
uint8_t setup = read_register(RF_SETUP) ;
|
|
setup &= ~(_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
|
|
|
|
switch( level )
|
|
{
|
|
case RF24_PA_MAX:
|
|
setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
|
|
break ;
|
|
|
|
case RF24_PA_HIGH:
|
|
setup |= _BV(RF_PWR_HIGH) ;
|
|
break ;
|
|
|
|
case RF24_PA_LOW:
|
|
setup |= _BV(RF_PWR_LOW) ;
|
|
break ;
|
|
|
|
case RF24_PA_MIN:
|
|
break ;
|
|
|
|
case RF24_PA_ERROR:
|
|
// On error, go to maximum PA
|
|
setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
|
|
break ;
|
|
}
|
|
|
|
write_register( RF_SETUP, setup ) ;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
rf24_pa_dbm_e RF24::getPALevel(void) const
|
|
{
|
|
rf24_pa_dbm_e result = RF24_PA_ERROR ;
|
|
uint8_t power = read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
|
|
|
|
switch( power )
|
|
{
|
|
case (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)):
|
|
result = RF24_PA_MAX ;
|
|
break ;
|
|
|
|
case _BV(RF_PWR_HIGH):
|
|
result = RF24_PA_HIGH ;
|
|
break ;
|
|
|
|
case _BV(RF_PWR_LOW):
|
|
result = RF24_PA_LOW ;
|
|
break ;
|
|
|
|
default:
|
|
result = RF24_PA_MIN ;
|
|
break ;
|
|
}
|
|
|
|
return result ;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
boolean RF24::setDataRate(const rf24_datarate_e speed)
|
|
{
|
|
uint8_t setup = read_register(RF_SETUP) ;
|
|
|
|
// HIGH and LOW '00' is 1Mbs - our default
|
|
wide_band = false ;
|
|
setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ;
|
|
if( speed == RF24_250KBPS )
|
|
{
|
|
// Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
|
|
// Making it '10'.
|
|
wide_band = false ;
|
|
setup |= _BV( RF_DR_LOW ) ;
|
|
}
|
|
else
|
|
{
|
|
// Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
|
|
// Making it '01'
|
|
if ( speed == RF24_2MBPS )
|
|
{
|
|
wide_band = true ;
|
|
setup |= _BV(RF_DR_HIGH);
|
|
} else {
|
|
// 1Mbs
|
|
wide_band = false ;
|
|
}
|
|
}
|
|
write_register(RF_SETUP,setup);
|
|
|
|
// Verify our result
|
|
setup = read_register(RF_SETUP) ;
|
|
if( setup == setup ) {
|
|
return true ;
|
|
}
|
|
|
|
wide_band = false ;
|
|
return false ;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
rf24_datarate_e RF24::getDataRate( void ) const {
|
|
rf24_datarate_e result ;
|
|
uint8_t setup = read_register(RF_SETUP) ;
|
|
|
|
// Order matters in our case below
|
|
switch( setup & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ) {
|
|
case _BV(RF_DR_LOW):
|
|
// '10' = 250KBPS
|
|
result = RF24_250KBPS ;
|
|
break ;
|
|
|
|
case _BV(RF_DR_HIGH):
|
|
// '01' = 2MBPS
|
|
result = RF24_2MBPS ;
|
|
break ;
|
|
|
|
default:
|
|
// '00' = 1MBPS
|
|
result = RF24_1MBPS ;
|
|
break ;
|
|
}
|
|
|
|
return result ;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::setCRCLength(const rf24_crclength_e length) const
|
|
{
|
|
uint8_t config = read_register(CONFIG) & ~_BV(CRCO) ;
|
|
|
|
// Always make sure CRC hardware validation is actually on
|
|
config |= _BV(EN_CRC) ;
|
|
|
|
// Now config 8 or 16 bit CRCs - only 16bit need be turned on
|
|
// 8b is the default.
|
|
if( length == RF24_CRC_16 ) {
|
|
config |= _BV( CRCO ) ;
|
|
}
|
|
|
|
write_register( CONFIG, config ) ;
|
|
}
|
|
|
|
/******************************************************************/
|
|
|
|
void RF24::disableCRC( void ) const
|
|
{
|
|
uint8_t disable = read_register(CONFIG) & ~_BV(EN_CRC) ;
|
|
write_register( CONFIG, disable ) ;
|
|
}
|
|
// vim:ai:cin:sts=2 sw=2 ft=cpp
|
|
|