/* Copyright (C) 2011 James Coliz, Jr. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. */ #include #include #include "nRF24L01.h" #include "RF24.h" #undef SERIAL_DEBUG #ifdef SERIAL_DEBUG #define IF_SERIAL_DEBUG(x) (x) #else #define IF_SERIAL_DEBUG(x) #endif // Avoid spurious warnings #undef PROGMEM #define PROGMEM __attribute__(( section(".progmem.data") )) #undef PSTR #define PSTR(s) (__extension__({static prog_char __c[] PROGMEM = (s); &__c[0];})) /******************************************************************/ void RF24::csn(const int mode) const { SPI.setBitOrder(MSBFIRST); SPI.setDataMode(SPI_MODE0); SPI.setClockDivider(SPI_CLOCK_DIV2); digitalWrite(csn_pin,mode); } /******************************************************************/ void RF24::ce(const int level) const { digitalWrite(ce_pin,level); } /******************************************************************/ uint8_t RF24::read_register(const uint8_t reg, uint8_t* buf, uint8_t len) const { uint8_t status; csn(LOW); status = SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) ); while ( len-- ) *buf++ = SPI.transfer(0xff); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::read_register(const uint8_t reg) const { csn(LOW); SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) ); uint8_t result = SPI.transfer(0xff); csn(HIGH); return result; } /******************************************************************/ uint8_t RF24::write_register(const uint8_t reg, const uint8_t* buf, uint8_t len) const { uint8_t status; csn(LOW); status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) ); while ( len-- ) SPI.transfer(*buf++); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::write_register(const uint8_t reg, const uint8_t value) const { uint8_t status; IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\n\r"),reg,value)); csn(LOW); status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) ); SPI.transfer(value); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::write_payload(const void* buf, uint8_t len) { uint8_t status; const uint8_t* current = (const uint8_t*)buf; csn(LOW); status = SPI.transfer( W_TX_PAYLOAD ); uint8_t data_len = min(len,payload_size); uint8_t blank_len = payload_size - data_len; while ( data_len-- ) SPI.transfer(*current++); while ( blank_len-- ) SPI.transfer(0); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::read_payload(void* buf, uint8_t len) { uint8_t status; uint8_t* current = (uint8_t*)buf; csn(LOW); status = SPI.transfer( R_RX_PAYLOAD ); uint8_t data_len = min(len,payload_size); uint8_t blank_len = payload_size - data_len; while ( data_len-- ) *current++ = SPI.transfer(0xff); while ( blank_len-- ) SPI.transfer(0xff); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::flush_rx(void) const { uint8_t status; csn(LOW); status = SPI.transfer( FLUSH_RX ); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::flush_tx(void) const { uint8_t status; csn(LOW); status = SPI.transfer( FLUSH_TX ); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::get_status(void) const { uint8_t status; csn(LOW); status = SPI.transfer( NOP ); csn(HIGH); return status; } /******************************************************************/ void RF24::print_status(uint8_t status) const { printf_P(PSTR("STATUS=%02x: RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\n\r"), status, (status & _BV(RX_DR))?1:0, (status & _BV(TX_DS))?1:0, (status & _BV(MAX_RT))?1:0, ((status >> RX_P_NO) & B111), (status & _BV(TX_FULL))?1:0 ); } /******************************************************************/ void RF24::print_observe_tx(uint8_t value) const { printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\n\r"), value, (value >> PLOS_CNT) & B1111, (value >> ARC_CNT) & B1111 ); } /******************************************************************/ RF24::RF24(const uint8_t _cepin, const uint8_t _cspin): ce_pin(_cepin), csn_pin(_cspin), wide_band(true), p_variant(false), payload_size(32), ack_payload_available(false) { } /******************************************************************/ void RF24::setChannel(const uint8_t channel) { if( wide_band ) { write_register(RF_CH,min(channel,127)); } else { write_register(RF_CH,min(channel,127)); } } /******************************************************************/ void RF24::setPayloadSize(const uint8_t size) { payload_size = min(size,32); } /******************************************************************/ uint8_t RF24::getPayloadSize(void) { return payload_size; } /******************************************************************/ void RF24::printDetails(void) const { uint8_t buffer[5]; uint8_t status = read_register(RX_ADDR_P0,buffer,5); print_status(status); printf_P(PSTR("RX_ADDR_P0 = 0x")); uint8_t *bufptr = buffer + 5; while( bufptr-- > buffer ) printf_P(PSTR("%02x"),*bufptr); printf_P(PSTR("\n\r")); status = read_register(RX_ADDR_P1,buffer,5); printf_P(PSTR("RX_ADDR_P1 = 0x")); bufptr = buffer + 5; while( bufptr-- > buffer ) printf_P(PSTR("%02x"),*bufptr); printf_P(PSTR("\n\r")); status = read_register(RX_ADDR_P2,buffer,1); printf_P(PSTR("RX_ADDR_P2 = 0x%02x"),*buffer); printf_P(PSTR("\n\r")); status = read_register(RX_ADDR_P3,buffer,1); printf_P(PSTR("RX_ADDR_P3 = 0x%02x"),*buffer); printf_P(PSTR("\n\r")); status = read_register(RX_ADDR_P4,buffer,1); printf_P(PSTR("RX_ADDR_P4 = 0x%02x"),*buffer); printf_P(PSTR("\n\r")); status = read_register(RX_ADDR_P5,buffer,1); printf_P(PSTR("RX_ADDR_P5 = 0x%02x"),*buffer); printf_P(PSTR("\n\r")); status = read_register(TX_ADDR,buffer,5); printf_P(PSTR("TX_ADDR = 0x")); bufptr = buffer + 5; while( bufptr-- > buffer ) printf_P(PSTR("%02x"),*bufptr); printf_P(PSTR("\n\r")); status = read_register(RX_PW_P0,buffer,1); printf_P(PSTR("RX_PW_P0 = 0x%02x\n\r"),*buffer); status = read_register(RX_PW_P1,buffer,1); printf_P(PSTR("RX_PW_P1 = 0x%02x\n\r"),*buffer); read_register(EN_AA,buffer,1); printf_P(PSTR("EN_AA = 0x%02x\n\r"),*buffer); read_register(EN_RXADDR,buffer,1); printf_P(PSTR("EN_RXADDR = 0x%02x\n\r"),*buffer); read_register(RF_CH,buffer,1); printf_P(PSTR("RF_CH = 0x%02x\n\r"),*buffer); read_register(RF_SETUP,buffer,1); printf_P(PSTR("RF_SETUP = 0x%02x (data rate: %d)\n\r"),*buffer,getDataRate()); printf_P(PSTR("Hardware; isPVariant: %d\n\r"),isPVariant()); read_register(CONFIG,buffer,1); printf_P(PSTR("CONFIG = 0x%02x (CRC enable: %d; CRC16: %d)\n\r"), *buffer,(*buffer)&_BV(EN_CRC)?1:0, (*buffer)&_BV(CRCO)?1:0); } /******************************************************************/ void RF24::begin(void) { // Initialize pins pinMode(ce_pin,OUTPUT); pinMode(csn_pin,OUTPUT); // Initialize SPI bus // Minimum ideal SPI bus speed is 2x data rate // If we assume 2Mbs data rate and 16Mhz clock, a // divider of 4 is the minimum we want. // CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz // We'll use a divider of 2 which will work up to // MCU speeds of 20Mhz. // CLK:BUS 8Mhz:4Mhz, 16Mhz:8Mhz, or 20Mhz:10Mhz (max) SPI.begin(); SPI.setBitOrder(MSBFIRST); SPI.setDataMode(SPI_MODE0); SPI.setClockDivider(SPI_CLOCK_DIV2); ce(LOW); csn(HIGH); // Must allow the radio time to settle else configuration bits will not necessarily stick. // This is actually only required following power up but some settling time also appears to // be required after resets too. For full coverage, we'll always assume the worst. // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped. // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure. // WARNING: Delay is based on P-variant whereby non-P *may* require different timing. delay( 5 ) ; // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet // sizes must never be used. See documentation for a more complete explanation. write_register(SETUP_RETR,(B0100 << ARD) | (B1111 << ARC)); // Restore our default PA level setPALevel( RF24_PA_MAX ) ; // Determine if this is a p or non-p RF24 module and then // reset our data rate back to default value. This works // because a non-P variant won't allow the data rate to // be set to 250Kbps. if( setDataRate( RF24_250KBPS ) ) { p_variant = true ; } setDataRate( RF24_2MBPS ) ; // Initialize CRC and request 2-byte (16bit) CRC setCRCLength( RF24_CRC_16 ) ; // Reset current status // Notice reset and flush is the last thing we do write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); // Flush buffers flush_rx(); flush_tx(); } /******************************************************************/ void RF24::startListening(void) const { write_register(CONFIG, read_register(CONFIG) | _BV(PWR_UP) | _BV(PRIM_RX)); write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); // Restore the pipe0 adddress write_register(RX_ADDR_P0, reinterpret_cast(&pipe0_reading_address), 5); // Flush buffers flush_rx(); // Go! ce(HIGH); // wait for the radio to come up (130us actually only needed) delayMicroseconds(130); } /******************************************************************/ void RF24::stopListening(void) const { ce(LOW); } /******************************************************************/ void RF24::powerDown(void) const { write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP)); } /******************************************************************/ boolean RF24::write( const void* buf, uint8_t len ) { boolean result = false; // Transmitter power-up write_register(CONFIG, ( read_register(CONFIG) | _BV(PWR_UP) ) & ~_BV(PRIM_RX) ); delay(2); // Send the payload write_payload( buf, len ); // Allons! ce(HIGH); // IN the end, the send should be blocking. It comes back in 60ms worst case, or much faster // if I tighted up the retry logic. (Default settings will be 1500us. // Monitor the send uint8_t observe_tx; uint8_t status; uint8_t retries = 255; do { status = read_register(OBSERVE_TX,&observe_tx,1); IF_SERIAL_DEBUG(Serial.print(status,HEX)); IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX)); if ( ! retries-- ) { IF_SERIAL_DEBUG(printf("ABORTED: too many retries\n\r")); break; } } while( ! ( status & ( _BV(TX_DS) | _BV(MAX_RT) ) ) ); if ( status & _BV(TX_DS) ) result = true; IF_SERIAL_DEBUG(Serial.print(result?"...OK.":"...Failed")); ack_payload_available = ( status & _BV(RX_DR) ); if ( ack_payload_available ) { write_register(STATUS,_BV(RX_DR) ); ack_payload_length = read_payload_length(); IF_SERIAL_DEBUG(Serial.print("[AckPacket]/")); IF_SERIAL_DEBUG(Serial.println(ack_payload_length,DEC)); } // Yay, we are done. ce(LOW); // Power down write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP)); // Reset current status write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); // Flush buffers flush_tx(); return result; } /******************************************************************/ uint8_t RF24::read_payload_length(void) { uint8_t result = 0; csn(LOW); SPI.transfer( R_RX_PL_WID ); result = SPI.transfer(0xff); csn(HIGH); return result; } /******************************************************************/ boolean RF24::available(void) const { return available(NULL); } /******************************************************************/ boolean RF24::available(uint8_t* pipe_num) const { uint8_t status = get_status(); IF_SERIAL_DEBUG(print_status(status)); boolean result = ( status & _BV(RX_DR) ); if (result) { // If the caller wants the pipe number, include that if ( pipe_num ) *pipe_num = ( status >> RX_P_NO ) & B111; // Clear the status bit // ??? Should this REALLY be cleared now? Or wait until we // actually READ the payload? write_register(STATUS,_BV(RX_DR) ); // Handle ack payload receipt if ( status & _BV(TX_DS) ) { write_register(STATUS,_BV(TX_DS)); } } return result; } /******************************************************************/ boolean RF24::read( void* buf, uint8_t len ) { // was this the last of the data available? boolean result = false; // Fetch the payload read_payload( buf, len ); uint8_t fifo_status; read_register(FIFO_STATUS,&fifo_status,1); if ( fifo_status & _BV(RX_EMPTY) ) result = true; return result; } /******************************************************************/ void RF24::openWritingPipe(uint64_t value) { // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+) // expects it LSB first too, so we're good. write_register(RX_ADDR_P0, reinterpret_cast(&value), 5); write_register(TX_ADDR, reinterpret_cast(&value), 5); write_register(RX_PW_P0,min(payload_size,32)); } /******************************************************************/ void RF24::openReadingPipe(const uint8_t child, const uint64_t address) { const uint8_t child_pipe[] = { RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 }; const uint8_t child_payload_size[] = { RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5 }; const uint8_t child_pipe_enable[] = { ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5 }; // If this is pipe 0, cache the address. This is needed because // openWritingPipe() will overwrite the pipe 0 address, so // startListening() will have to restore it. if (child == 0) pipe0_reading_address = address; if (child < 6) { // For pipes 2-5, only write the LSB if ( child < 2 ) write_register(child_pipe[child], reinterpret_cast(&address), 5); else write_register(child_pipe[child], reinterpret_cast(&address), 1); write_register(child_payload_size[child],payload_size); // Note this is kind of an inefficient way to set up these enable bits, but I thought it made // the calling code more simple uint8_t en_rx; read_register(EN_RXADDR,&en_rx,1); en_rx |= _BV(child_pipe_enable[child]); write_register(EN_RXADDR,en_rx); } } /******************************************************************/ void RF24::toggle_features(void) const { csn(LOW); SPI.transfer( ACTIVATE ); SPI.transfer( 0x73 ); csn(HIGH); } /******************************************************************/ void RF24::enableAckPayload(void) const { // // enable ack payload and dynamic payload features // write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) ); // If it didn't work, the features are not enabled if ( ! read_register(FEATURE) ) { // So enable them and try again toggle_features(); write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) ); } IF_SERIAL_DEBUG(printf("FEATURE=%i\n\r",read_register(FEATURE))); // // Enable dynamic payload on pipe 0 // write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0)); } /******************************************************************/ void RF24::writeAckPayload(const uint8_t pipe, const void* buf, uint8_t len) const { const uint8_t* current = (const uint8_t*)buf; csn(LOW); SPI.transfer( W_ACK_PAYLOAD | ( pipe & B111 ) ); uint8_t data_len = min(len,32); while ( data_len-- ) SPI.transfer(*current++); csn(HIGH); } /******************************************************************/ boolean RF24::isAckPayloadAvailable(void) { boolean result = ack_payload_available; ack_payload_available = false; return result; } /******************************************************************/ boolean RF24::isPVariant(void) const { return p_variant ; } /******************************************************************/ void RF24::setAutoAck(const bool enable) const { if ( enable ) write_register(EN_AA, B111111); else write_register(EN_AA, 0); } /******************************************************************/ void RF24::setAutoAck( const uint8_t pipe, const bool enable ) const { uint8_t en_aa = read_register( EN_AA ) ; if( enable ) { en_aa |= _BV(pipe) ; } else { en_aa &= ~_BV(pipe) ; } write_register( EN_AA, en_aa ) ; } /******************************************************************/ boolean RF24::testCarrier(void) const { return ( read_register(CD) & 1 ); } /******************************************************************/ boolean RF24::testRPD(void) const { return ( read_register(RPD) & 1 ) ; } /******************************************************************/ void RF24::setPALevel(const rf24_pa_dbm_e level) const { uint8_t setup = read_register(RF_SETUP) ; setup &= ~(_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ; switch( level ) { case RF24_PA_MAX: setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ; break ; case RF24_PA_HIGH: setup |= _BV(RF_PWR_HIGH) ; break ; case RF24_PA_LOW: setup |= _BV(RF_PWR_LOW) ; break ; case RF24_PA_MIN: break ; case RF24_PA_ERROR: // On error, go to maximum PA setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ; break ; } write_register( RF_SETUP, setup ) ; } /******************************************************************/ rf24_pa_dbm_e RF24::getPALevel(void) const { rf24_pa_dbm_e result = RF24_PA_ERROR ; uint8_t power = read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ; switch( power ) { case (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)): result = RF24_PA_MAX ; break ; case _BV(RF_PWR_HIGH): result = RF24_PA_HIGH ; break ; case _BV(RF_PWR_LOW): result = RF24_PA_LOW ; break ; default: result = RF24_PA_MIN ; break ; } return result ; } /******************************************************************/ boolean RF24::setDataRate(const rf24_datarate_e speed) { uint8_t setup = read_register(RF_SETUP) ; // HIGH and LOW '00' is 1Mbs - our default wide_band = false ; setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ; if( speed == RF24_250KBPS ) { // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0 // Making it '10'. wide_band = false ; setup |= _BV( RF_DR_LOW ) ; } else { // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1 // Making it '01' if ( speed == RF24_2MBPS ) { wide_band = true ; setup |= _BV(RF_DR_HIGH); } else { // 1Mbs wide_band = false ; } } write_register(RF_SETUP,setup); // Verify our result setup = read_register(RF_SETUP) ; if( setup == setup ) { return true ; } wide_band = false ; return false ; } /******************************************************************/ rf24_datarate_e RF24::getDataRate( void ) const { rf24_datarate_e result ; uint8_t setup = read_register(RF_SETUP) ; // Order matters in our case below switch( setup & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ) { case _BV(RF_DR_LOW): // '10' = 250KBPS result = RF24_250KBPS ; break ; case _BV(RF_DR_HIGH): // '01' = 2MBPS result = RF24_2MBPS ; break ; default: // '00' = 1MBPS result = RF24_1MBPS ; break ; } return result ; } /******************************************************************/ void RF24::setCRCLength(const rf24_crclength_e length) const { uint8_t config = read_register(CONFIG) & ~_BV(CRCO) ; // Always make sure CRC hardware validation is actually on config |= _BV(EN_CRC) ; // Now config 8 or 16 bit CRCs - only 16bit need be turned on // 8b is the default. if( length == RF24_CRC_16 ) { config |= _BV( CRCO ) ; } write_register( CONFIG, config ) ; } /******************************************************************/ void RF24::disableCRC( void ) const { uint8_t disable = read_register(CONFIG) & ~_BV(EN_CRC) ; write_register( CONFIG, disable ) ; } // vim:ai:cin:sts=2 sw=2 ft=cpp