implement position estimation and correction

This commit is contained in:
interfisch 2021-01-31 20:41:53 +01:00
parent ea71f7dd2c
commit fd43be8326

View file

@ -1,6 +1,14 @@
#include <Arduino.h> #include <Arduino.h>
#include <Wire.h> #include <Wire.h>
/*
TODO:
- correct speedfactor when moving at pwm=100 for some time over opaque+clear OR implement speedfactor for up and lower state
- implement second blind
- implement drive to position
- implement failure detection
- implement homie
*/
#include "WEMOS_Motor.h" #include "WEMOS_Motor.h"
@ -21,43 +29,40 @@ unsigned long last_sensor_read=0;
#define SENSOR_READ_INTERVAL 20 //in ms #define SENSOR_READ_INTERVAL 20 //in ms
#define SENSE_FILTER_SIZE 20 //value will have a delay of td = SENSE_FILTER_SIZE/2*SENSOR_READ_INTERVAL #define SENSE_FILTER_SIZE 20 //value will have a delay of td = SENSE_FILTER_SIZE/2*SENSOR_READ_INTERVAL
#define CALCULATEPOSITIONESTIMATE_INTERVAL 100
unsigned long last_calculate_position_estimate=0;
bool manual_drive_direction=false; bool manual_drive_direction=false;
#define PIN_SENSE A0 #define PIN_SENSE A0
unsigned long last_print=0; unsigned long last_print=0;
#define SENSE_CLEAR_LOWER 40 //adc value lower limit for clear part. clear is around 70
#define SENSE_CLEAR_UPPER 100 //adc value upper limit for clear part
#define SENSE_OPAQUE_LOWER 600 //adc value lower limit for opaque part. opaque is around 675
#define SENSE_OPAQUE_UPPER 750 //adc value upper limit for opaque part
#define SENSE_END_LOWER 850 //adc value lower limit for end marker
#define SENSE_END_UPPER 1024 //adc value upper limit for end marker
//define directions for motors //define directions for motors
#define _M1_UP _CCW; #define _UP _CCW
#define _M1_DOWN _CW; #define _DOWN _CW
#define _M2_UP _CCW;
#define _M2_DOWN _CW;
#define SENSESTATUS_CLEAR 1;
#define SENSESTATUS_OPAQUE 2;
#define SENSESTATUS_END 3;
#define SENSESTATUS_UNKNOWN 0;
#define SENSESTATUS_CLEAR 1
#define SENSESTATUS_OPAQUE 2
#define SENSESTATUS_END 3
#define SENSESTATUS_UNKNOWN 0
#define MODE_IDLE 0
#define MODE_FIND_END 1
#define MODE_MEASURE_SPEED 2
#define MODE_GO_TO_POS 3
//model parameters/variables //model parameters/variables
struct blindmodel struct blindmodel
{ {
unsigned long lastreadtime=0; unsigned long lastreadtime=0;
float position=0; //0 is furthest open. positive is down (closing). unit is mm float position=0; //0 is furthest open. positive is down (closing). unit is mm. estimated position
float length_clear; //length of clear part in position units float length_clear; //length of clear part in position units
float length_opaque; //lengt of opaque part in position units float length_opaque; //lengt of opaque part in position units
float start_first_clear; //distance from end marker to beginning of first clear section
//end marker should be on the opaque section. So that a full clear section follows
float speed_estimate=1; //how much position units (mm) per second at pwm=100 float speedfactor=1; //how much position units (mm) per second at pwm=100
int sense_clear_lower; //adc value lower limit for clear part. clear is around 70 int sense_clear_lower; //adc value lower limit for clear part. clear is around 70
int sense_clear_upper; //adc value upper limit for clear part int sense_clear_upper; //adc value upper limit for clear part
@ -68,7 +73,9 @@ struct blindmodel
int sense_end_lower; //adc value lower limit for end marker int sense_end_lower; //adc value lower limit for end marker
int sense_end_upper; //adc value upper limit for end marker int sense_end_upper; //adc value upper limit for end marker
uint8_t sense_status=0; uint8_t sense_status=0;
uint8_t last_sense_status=0;
int sense_read[SENSE_FILTER_SIZE] = {0}; int sense_read[SENSE_FILTER_SIZE] = {0};
uint8_t sense_read_pos=0; //position of last element written to uint8_t sense_read_pos=0; //position of last element written to
@ -76,6 +83,18 @@ struct blindmodel
unsigned long last_sense_ok=0; //last time sensor measured class ok unsigned long last_sense_ok=0; //last time sensor measured class ok
//TODO: implement timeout if last_sense_ok gets too high. //TODO: implement timeout if last_sense_ok gets too high.
uint8_t mode=MODE_IDLE;
uint8_t mode_find_end_state=0;
uint8_t mode_measure_speed_state=0;
unsigned long timing_start;
int speed=0; //-100 to 100. commanded speed to motor. negative means upwards
int speedSimulated=0; //software simulated motor speed up and slow down
float simulated_acc_dec=-100; //pwm/sec^2, speed getting more negative (accelerating up). this value should be negative. better choose too small absolute values
float simulated_acc_inc=100; //pwm/sec^2, speed getting more positive (accelerating down)
}; };
blindmodel blind1; blindmodel blind1;
@ -86,15 +105,18 @@ blindmodel blind1;
Motor M1(0x30, _MOTOR_A, 1000); //Motor A Motor M1(0x30, _MOTOR_A, 1000); //Motor A
Motor M2(0x30, _MOTOR_B, 1000); //Motor B Motor M2(0x30, _MOTOR_B, 1000); //Motor B
unsigned long last_motor_send=0;
#define MOTOR_UPDATE_INTERVAL 100
int getFitered(int* values,uint8_t size); int getFitered(int* values,uint8_t size);
uint8_t classifySensorValue(blindmodel &blind); uint8_t classifySensorValue(blindmodel &blind);
void checkModes(blindmodel &blind);
void setup() { void setup() {
Serial.begin(57600); Serial.begin(115200);
Serial.println("Starting"); Serial.println("Starting");
button1.pin=PIN_BUTTON1; button1.pin=PIN_BUTTON1;
@ -111,11 +133,18 @@ void setup() {
blind1.length_opaque=74; blind1.length_opaque=74;
blind1.sense_clear_lower=40; blind1.sense_clear_lower=40;
blind1.sense_clear_upper=100; blind1.sense_clear_upper=100;
blind1.sense_opaque_lower=600; blind1.sense_opaque_lower=500;
blind1.sense_opaque_upper=750; blind1.sense_opaque_upper=750;
blind1.sense_end_lower=850; blind1.sense_end_lower=850;
blind1.sense_end_upper=1024; blind1.sense_end_upper=1024;
blind1.speed_estimate=20; blind1.speedfactor=29;
blind1.start_first_clear=27;
blind1.simulated_acc_dec=-150;
blind1.simulated_acc_inc=200;
//Test
blind1.mode = MODE_FIND_END;
blind1.mode_find_end_state=0; //reset mode find state
} }
@ -135,19 +164,20 @@ void loop() {
//Manual movement by button //Manual movement by button
if (button1.changed) { if (button1.changed) {
blind1.mode=MODE_IDLE;
if (button1.down) { //changed to pressed if (button1.down) { //changed to pressed
if (manual_drive_direction) { if (manual_drive_direction) {
M1.setmotor( _CW, 100); //M1.setmotor( _CW, 100);
Serial.print("CW PWM: "); blind1.speed=-100;
//Serial.print("CW PWM: ");
}else{ }else{
M1.setmotor( _CCW, 100); blind1.speed=100;
Serial.print("CCW PWM: "); //Serial.print("CCW PWM: ");
} }
Serial.println(100);
manual_drive_direction=!manual_drive_direction; //switch direction every new press manual_drive_direction=!manual_drive_direction; //switch direction every new press
}else{ //changed to released }else{ //changed to released
Serial.println("Motor STOP"); //Serial.println("Motor STOP");
M1.setmotor(_STOP); blind1.speed=0;
} }
} }
@ -164,10 +194,134 @@ void loop() {
last_sensor_read=millis(); last_sensor_read=millis();
} }
if (millis() > last_print + 100) { if (millis() > last_print + 500) {
Serial.println(blind1.sense_status); Serial.print("SenseStatus=");
switch(blind1.sense_status){
case SENSESTATUS_UNKNOWN:
Serial.print("UNK");
break;
case SENSESTATUS_CLEAR:
Serial.print("CLE");
break;
case SENSESTATUS_OPAQUE:
Serial.print("OPA");
break;
case SENSESTATUS_END:
Serial.print("END");
break;
}
Serial.print("("); Serial.print(getFitered(blind1.sense_read, SENSE_FILTER_SIZE)); Serial.print(")");
Serial.print(", mode=");
switch(blind1.mode){
case MODE_IDLE:
Serial.print("IDL");
break;
case MODE_FIND_END:
Serial.print("FIN");
break;
case MODE_GO_TO_POS:
Serial.print("POS");
break;
case MODE_MEASURE_SPEED:
Serial.print("MSP");
break;
}
Serial.print(", speed=");
Serial.print(blind1.speed);
Serial.print(", speedSim=");
Serial.print(blind1.speedSimulated);
Serial.print(", pos=");
Serial.println(blind1.position);
last_print=millis(); last_print=millis();
} }
checkModes(blind1);
if (blind1.sense_status==SENSESTATUS_END) {
if (blind1.speed<0) { //stop driving up
blind1.speed=0;
}
}
//Estimate blind position and correct
if (millis() > last_calculate_position_estimate + CALCULATEPOSITIONESTIMATE_INTERVAL) {
float _actualTime=(millis()-last_calculate_position_estimate)/1000.0; //in seconds
blind1.speedSimulated+= constrain(blind1.speed - blind1.speedSimulated, blind1.simulated_acc_dec*_actualTime, blind1.simulated_acc_inc*_actualTime);
blind1.position+= blind1.speedSimulated/100.0*blind1.speedfactor * _actualTime;
last_calculate_position_estimate=millis();
}
if (blind1.mode!= MODE_FIND_END) {
if (blind1.sense_status == SENSESTATUS_END && blind1.last_sense_status != SENSESTATUS_END) { //entered end marker
blind1.position=0;
float _filterdelay_correction=blind1.speedSimulated/100.0*blind1.speedfactor *SENSE_FILTER_SIZE/2*SENSOR_READ_INTERVAL/1000.0;
blind1.position += _filterdelay_correction; //correct for filter delay
Serial.print("Reached End marker. set Position="); Serial.println(blind1.position);
}
if (blind1.sense_status == SENSESTATUS_CLEAR || blind1.sense_status == SENSESTATUS_OPAQUE || blind1.sense_status == SENSESTATUS_END) { //either opaque or clear (or end, only for last update used)
if (blind1.sense_status != blind1.last_sense_status) { //status changed
if (blind1.last_sense_status == SENSESTATUS_CLEAR || blind1.last_sense_status == SENSESTATUS_OPAQUE) { //only changes from clear to opaque or opaque to clear
float _position_before=blind1.position;//only for text output debugging
if ((blind1.speedSimulated>0 && blind1.sense_status==SENSESTATUS_OPAQUE) || (blind1.speedSimulated<0 && blind1.sense_status==SENSESTATUS_CLEAR)) { //moving down from and clear to opaque OR moving up and from opaque to clear
//estimated_position_difference = -blind1.position + blind1.start_first_clear+blind1.length_clear + _n*(blind1.length_clear+blind1.length_opaque); //possible occurances. let estimated_position=0 , solve for n
int _n = round((blind1.position -blind1.start_first_clear - blind1.length_clear)/(blind1.length_clear+blind1.length_opaque)); //find closest n
blind1.position = blind1.start_first_clear+blind1.length_clear + _n*(blind1.length_clear+blind1.length_opaque); //calculate position from _n
float _filterdelay_correction=blind1.speedSimulated/100.0*blind1.speedfactor *SENSE_FILTER_SIZE/2*SENSOR_READ_INTERVAL/1000.0;
blind1.position += _filterdelay_correction; //correct for filter delay
Serial.print("n=");
Serial.println(_n);
Serial.print("posCorrection="); Serial.print(_filterdelay_correction);
Serial.print(", DOWN&CLE->OPA or UP&OPA->CLE, before=");
}else if((blind1.speedSimulated>0 && blind1.sense_status==SENSESTATUS_CLEAR) || (blind1.speedSimulated<0 && blind1.sense_status==SENSESTATUS_OPAQUE)) { //the other transition
//estimated_position_difference = -blind1.position + blind1.start_first_clear + _n*(blind1.length_clear+blind1.length_opaque); //possible occurances. let estimated_position=0 , solve for n
int _n = round(( blind1.position - blind1.start_first_clear)/(blind1.length_clear+blind1.length_opaque)); //find closest n
Serial.print("n=");
Serial.println(_n);
blind1.position = blind1.start_first_clear + _n*(blind1.length_clear+blind1.length_opaque); //calculate position from _n
float _filterdelay_correction=blind1.speedSimulated/100.0*blind1.speedfactor*SENSE_FILTER_SIZE/2*SENSOR_READ_INTERVAL/1000.0;
blind1.position += _filterdelay_correction; //correct for filter delay
Serial.print("posCorrectoin="); Serial.print(_filterdelay_correction);
Serial.print(", UP&CLE->OPA or DOWN&OPA->CLE, before=");
}
Serial.print(_position_before);
Serial.print(", after=");
Serial.print(blind1.position);
Serial.print(", diff=");
Serial.println(blind1.position-_position_before);
}
blind1.last_sense_status = blind1.sense_status; //update only if new one is opaque or clear
}
}
}
//Update Motor Driver
if (millis() > last_motor_send + MOTOR_UPDATE_INTERVAL) {
if(blind1.speed<0){
M1.setmotor( _UP, abs(blind1.speed));
}else if(blind1.speed>0){
M1.setmotor( _DOWN, abs(blind1.speed));
}else{
M1.setmotor(_STOP);
}
last_motor_send=millis();
}
} }
int sort_desc(const void *cmp1, const void *cmp2) //compare function for qsort int sort_desc(const void *cmp1, const void *cmp2) //compare function for qsort
@ -206,6 +360,73 @@ uint8_t classifySensorValue(blindmodel &blind) {
} }
} }
void checkModes(blindmodel &blind) {
switch(blind.mode) {
case MODE_FIND_END:
switch(blind.mode_find_end_state) {
case 0: //drive up until end sensed
blind.speed=-100; //up
if (blind1.sense_status==SENSESTATUS_END) {
blind.speed=0; //stop. for safety
blind.mode_find_end_state++;
}
break;
case 1: //drive down slowly until passed end maker
blind.speed=10; //down slow
if (blind1.sense_status!=SENSESTATUS_END) {
blind.speed=0; //stop
blind.position=0;
//blind.mode=MODE_IDLE;
blind.mode=MODE_MEASURE_SPEED; //next measure speed
blind.mode_find_end_state=0; //reset
}
break;
}
break;
case MODE_MEASURE_SPEED:
switch(blind.mode_measure_speed_state) {
case 0: //drive down, start timing at clear
blind.speed=100; //down
if (blind1.sense_status==SENSESTATUS_CLEAR) {
blind.timing_start=millis();
blind.mode_measure_speed_state++;
}
break;
case 1: //on clear section
blind.speed=100; //down
if (blind1.sense_status==SENSESTATUS_OPAQUE) { //wait for opaque section
blind.mode_measure_speed_state++;
}
break;
case 2: //on opaque section
blind.speed=100; //down
if (blind1.sense_status==SENSESTATUS_CLEAR) { //wait for clear section
blind.speedfactor=(blind.length_clear+blind.length_opaque)/ ((millis()-blind.timing_start)/1000.0); //calculate length per second
Serial.print("speedfactor=");
Serial.print(blind.speedfactor);
Serial.println(" mm/s");
blind.position = blind.length_opaque+blind.length_clear+blind.start_first_clear; //set position
blind.speed=0; //stop
blind.mode_measure_speed_state=0; // reset
blind.mode=MODE_IDLE;
}
break;
}
break;
case MODE_GO_TO_POS:
break;
}
}
/* /*
void loop() { void loop() {