blinds_motorcontrol/src/main.cpp

468 lines
15 KiB
C++
Raw Normal View History

#include <Arduino.h>
2021-01-31 12:08:48 +00:00
#include <Wire.h>
/*
TODO:
- correct speedfactor when moving at pwm=100 for some time over opaque+clear OR implement speedfactor for up and lower state
- implement second blind
- implement drive to position
- implement failure detection
- implement homie
*/
2021-01-31 12:08:48 +00:00
#include "WEMOS_Motor.h"
//follow firmware flash guide for new wemos motor shield v1.0 https://github.com/thomasfredericks/wemos_motor_shield
2021-01-31 16:59:57 +00:00
#define BUTTON_DEBOUNCE 200
2021-01-31 16:59:57 +00:00
#define PIN_BUTTON1 D5
struct button{
uint8_t pin;
unsigned long last_time_read=0;
bool down=false;
bool changed=false;
};
button button1;
unsigned long last_sensor_read=0;
#define SENSOR_READ_INTERVAL 20 //in ms
#define SENSE_FILTER_SIZE 20 //value will have a delay of td = SENSE_FILTER_SIZE/2*SENSOR_READ_INTERVAL
#define CALCULATEPOSITIONESTIMATE_INTERVAL 100
unsigned long last_calculate_position_estimate=0;
bool manual_drive_direction=false;
#define PIN_SENSE A0
unsigned long last_print=0;
//define directions for motors
#define _UP _CCW
#define _DOWN _CW
2021-01-31 16:59:57 +00:00
#define SENSESTATUS_CLEAR 1
#define SENSESTATUS_OPAQUE 2
#define SENSESTATUS_END 3
#define SENSESTATUS_UNKNOWN 0
2021-01-31 16:59:57 +00:00
#define MODE_IDLE 0
#define MODE_FIND_END 1
#define MODE_MEASURE_SPEED 2
#define MODE_GO_TO_POS 3
2021-01-31 16:59:57 +00:00
//model parameters/variables
struct blindmodel
{
unsigned long lastreadtime=0;
float position=0; //0 is furthest open. positive is down (closing). unit is mm. estimated position
2021-01-31 16:59:57 +00:00
float length_clear; //length of clear part in position units
float length_opaque; //lengt of opaque part in position units
float start_first_clear; //distance from end marker to beginning of first clear section
//end marker should be on the opaque section. So that a full clear section follows
2021-01-31 16:59:57 +00:00
float speedfactor=1; //how much position units (mm) per second at pwm=100
2021-01-31 16:59:57 +00:00
int sense_clear_lower; //adc value lower limit for clear part. clear is around 70
int sense_clear_upper; //adc value upper limit for clear part
2021-01-31 16:59:57 +00:00
int sense_opaque_lower; //adc value lower limit for opaque part. opaque is around 675
int sense_opaque_upper; //adc value upper limit for opaque part
int sense_end_lower; //adc value lower limit for end marker
int sense_end_upper; //adc value upper limit for end marker
2021-01-31 16:59:57 +00:00
uint8_t sense_status=0;
uint8_t last_sense_status=0;
2021-01-31 16:59:57 +00:00
int sense_read[SENSE_FILTER_SIZE] = {0};
uint8_t sense_read_pos=0; //position of last element written to
float set_position=0;
unsigned long last_sense_ok=0; //last time sensor measured class ok
//TODO: implement timeout if last_sense_ok gets too high.
uint8_t mode=MODE_IDLE;
uint8_t mode_find_end_state=0;
uint8_t mode_measure_speed_state=0;
unsigned long timing_start;
int speed=0; //-100 to 100. commanded speed to motor. negative means upwards
int speedSimulated=0; //software simulated motor speed up and slow down
float simulated_acc_dec=-100; //pwm/sec^2, speed getting more negative (accelerating up). this value should be negative. better choose too small absolute values
float simulated_acc_inc=100; //pwm/sec^2, speed getting more positive (accelerating down)
2021-01-31 16:59:57 +00:00
};
blindmodel blind1;
2021-01-31 12:08:48 +00:00
//Motor shield default I2C Address: 0x30
//PWM frequency: 1000Hz(1kHz)
Motor M1(0x30, _MOTOR_A, 1000); //Motor A
Motor M2(0x30, _MOTOR_B, 1000); //Motor B
unsigned long last_motor_send=0;
#define MOTOR_UPDATE_INTERVAL 100
2021-01-31 12:08:48 +00:00
2021-01-31 16:59:57 +00:00
int getFitered(int* values,uint8_t size);
uint8_t classifySensorValue(blindmodel &blind);
void checkModes(blindmodel &blind);
2021-01-31 16:59:57 +00:00
2021-01-31 12:08:48 +00:00
void setup() {
Serial.begin(115200);
2021-01-31 16:59:57 +00:00
Serial.println("Starting");
button1.pin=PIN_BUTTON1;
2021-01-31 12:08:48 +00:00
2021-01-31 16:59:57 +00:00
pinMode(button1.pin, INPUT_PULLUP);
pinMode(PIN_SENSE, INPUT);
M1.setmotor(_STOP);
M2.setmotor(_STOP);
2021-01-31 16:59:57 +00:00
//settings for blind
blind1.length_clear=50;
blind1.length_opaque=74;
blind1.sense_clear_lower=40;
blind1.sense_clear_upper=100;
blind1.sense_opaque_lower=500;
2021-01-31 16:59:57 +00:00
blind1.sense_opaque_upper=750;
blind1.sense_end_lower=850;
blind1.sense_end_upper=1024;
blind1.speedfactor=29;
blind1.start_first_clear=27;
blind1.simulated_acc_dec=-150;
blind1.simulated_acc_inc=200;
//Test
blind1.mode = MODE_FIND_END;
blind1.mode_find_end_state=0; //reset mode find state
2021-01-31 12:08:48 +00:00
}
void loop() {
2021-01-31 16:59:57 +00:00
button1.changed=false;
if (millis() > button1.last_time_read + BUTTON_DEBOUNCE) {
bool new_pin_button_down=!digitalRead(button1.pin);
if (button1.down != new_pin_button_down) { //changed
button1.down = new_pin_button_down; //update
button1.changed=true;
button1.last_time_read=millis(); //delay next check
}
}
2021-01-31 16:59:57 +00:00
//Manual movement by button
if (button1.changed) {
blind1.mode=MODE_IDLE;
2021-01-31 16:59:57 +00:00
if (button1.down) { //changed to pressed
if (manual_drive_direction) {
//M1.setmotor( _CW, 100);
blind1.speed=-100;
//Serial.print("CW PWM: ");
}else{
blind1.speed=100;
//Serial.print("CCW PWM: ");
}
manual_drive_direction=!manual_drive_direction; //switch direction every new press
2021-01-31 16:59:57 +00:00
}else{ //changed to released
//Serial.println("Motor STOP");
blind1.speed=0;
}
}
2021-01-31 16:59:57 +00:00
//Read sensor/encoder
if (millis() > last_sensor_read + SENSOR_READ_INTERVAL) {
blind1.sense_read_pos=(blind1.sense_read_pos+1)%SENSE_FILTER_SIZE; //next element
blind1.sense_read[blind1.sense_read_pos]=analogRead(PIN_SENSE);
classifySensorValue(blind1); //writes to blindmodel.sense_status
last_sensor_read=millis();
}
if (millis() > last_print + 500) {
Serial.print("SenseStatus=");
switch(blind1.sense_status){
case SENSESTATUS_UNKNOWN:
Serial.print("UNK");
break;
case SENSESTATUS_CLEAR:
Serial.print("CLE");
break;
case SENSESTATUS_OPAQUE:
Serial.print("OPA");
break;
case SENSESTATUS_END:
Serial.print("END");
break;
}
Serial.print("("); Serial.print(getFitered(blind1.sense_read, SENSE_FILTER_SIZE)); Serial.print(")");
Serial.print(", mode=");
switch(blind1.mode){
case MODE_IDLE:
Serial.print("IDL");
break;
case MODE_FIND_END:
Serial.print("FIN");
break;
case MODE_GO_TO_POS:
Serial.print("POS");
break;
case MODE_MEASURE_SPEED:
Serial.print("MSP");
break;
}
Serial.print(", speed=");
Serial.print(blind1.speed);
Serial.print(", speedSim=");
Serial.print(blind1.speedSimulated);
Serial.print(", pos=");
Serial.println(blind1.position);
last_print=millis();
}
checkModes(blind1);
if (blind1.sense_status==SENSESTATUS_END) {
if (blind1.speed<0) { //stop driving up
blind1.speed=0;
}
}
//Estimate blind position and correct
if (millis() > last_calculate_position_estimate + CALCULATEPOSITIONESTIMATE_INTERVAL) {
float _actualTime=(millis()-last_calculate_position_estimate)/1000.0; //in seconds
blind1.speedSimulated+= constrain(blind1.speed - blind1.speedSimulated, blind1.simulated_acc_dec*_actualTime, blind1.simulated_acc_inc*_actualTime);
blind1.position+= blind1.speedSimulated/100.0*blind1.speedfactor * _actualTime;
last_calculate_position_estimate=millis();
}
if (blind1.mode!= MODE_FIND_END) {
if (blind1.sense_status == SENSESTATUS_END && blind1.last_sense_status != SENSESTATUS_END) { //entered end marker
blind1.position=0;
float _filterdelay_correction=blind1.speedSimulated/100.0*blind1.speedfactor *SENSE_FILTER_SIZE/2*SENSOR_READ_INTERVAL/1000.0;
blind1.position += _filterdelay_correction; //correct for filter delay
Serial.print("Reached End marker. set Position="); Serial.println(blind1.position);
}
if (blind1.sense_status == SENSESTATUS_CLEAR || blind1.sense_status == SENSESTATUS_OPAQUE || blind1.sense_status == SENSESTATUS_END) { //either opaque or clear (or end, only for last update used)
if (blind1.sense_status != blind1.last_sense_status) { //status changed
if (blind1.last_sense_status == SENSESTATUS_CLEAR || blind1.last_sense_status == SENSESTATUS_OPAQUE) { //only changes from clear to opaque or opaque to clear
float _position_before=blind1.position;//only for text output debugging
if ((blind1.speedSimulated>0 && blind1.sense_status==SENSESTATUS_OPAQUE) || (blind1.speedSimulated<0 && blind1.sense_status==SENSESTATUS_CLEAR)) { //moving down from and clear to opaque OR moving up and from opaque to clear
//estimated_position_difference = -blind1.position + blind1.start_first_clear+blind1.length_clear + _n*(blind1.length_clear+blind1.length_opaque); //possible occurances. let estimated_position=0 , solve for n
int _n = round((blind1.position -blind1.start_first_clear - blind1.length_clear)/(blind1.length_clear+blind1.length_opaque)); //find closest n
blind1.position = blind1.start_first_clear+blind1.length_clear + _n*(blind1.length_clear+blind1.length_opaque); //calculate position from _n
float _filterdelay_correction=blind1.speedSimulated/100.0*blind1.speedfactor *SENSE_FILTER_SIZE/2*SENSOR_READ_INTERVAL/1000.0;
blind1.position += _filterdelay_correction; //correct for filter delay
Serial.print("n=");
Serial.println(_n);
Serial.print("posCorrection="); Serial.print(_filterdelay_correction);
Serial.print(", DOWN&CLE->OPA or UP&OPA->CLE, before=");
}else if((blind1.speedSimulated>0 && blind1.sense_status==SENSESTATUS_CLEAR) || (blind1.speedSimulated<0 && blind1.sense_status==SENSESTATUS_OPAQUE)) { //the other transition
//estimated_position_difference = -blind1.position + blind1.start_first_clear + _n*(blind1.length_clear+blind1.length_opaque); //possible occurances. let estimated_position=0 , solve for n
int _n = round(( blind1.position - blind1.start_first_clear)/(blind1.length_clear+blind1.length_opaque)); //find closest n
Serial.print("n=");
Serial.println(_n);
blind1.position = blind1.start_first_clear + _n*(blind1.length_clear+blind1.length_opaque); //calculate position from _n
float _filterdelay_correction=blind1.speedSimulated/100.0*blind1.speedfactor*SENSE_FILTER_SIZE/2*SENSOR_READ_INTERVAL/1000.0;
blind1.position += _filterdelay_correction; //correct for filter delay
Serial.print("posCorrectoin="); Serial.print(_filterdelay_correction);
Serial.print(", UP&CLE->OPA or DOWN&OPA->CLE, before=");
}
Serial.print(_position_before);
Serial.print(", after=");
Serial.print(blind1.position);
Serial.print(", diff=");
Serial.println(blind1.position-_position_before);
}
blind1.last_sense_status = blind1.sense_status; //update only if new one is opaque or clear
}
}
}
//Update Motor Driver
if (millis() > last_motor_send + MOTOR_UPDATE_INTERVAL) {
if(blind1.speed<0){
M1.setmotor( _UP, abs(blind1.speed));
}else if(blind1.speed>0){
M1.setmotor( _DOWN, abs(blind1.speed));
}else{
M1.setmotor(_STOP);
}
last_motor_send=millis();
}
}
2021-01-31 16:59:57 +00:00
int sort_desc(const void *cmp1, const void *cmp2) //compare function for qsort
{
// Need to cast the void * to int *
int a = *((int *)cmp1);
int b = *((int *)cmp2);
// The comparison
return a > b ? -1 : (a < b ? 1 : 0);
// A simpler, probably faster way:
//return b - a;
2021-01-31 16:59:57 +00:00
}
int getFitered(int* values,uint8_t size) {
int copied_values[size];
for(int i=0;i<size;i++) {
copied_values[i] = values[i]; //TODO: maybe some value filtering/selection here
}
int copied_values_length = sizeof(copied_values) / sizeof(copied_values[0]);
qsort(copied_values, copied_values_length, sizeof(copied_values[0]), sort_desc);
return copied_values[size/2];
}
uint8_t classifySensorValue(blindmodel &blind) {
int filtered=getFitered(blind.sense_read, SENSE_FILTER_SIZE);
if (filtered>=blind.sense_clear_lower && filtered<=blind.sense_clear_upper) {
blind.sense_status=SENSESTATUS_CLEAR;
blind.last_sense_ok=millis();
} else if (filtered>=blind.sense_opaque_lower && filtered<=blind.sense_opaque_upper) {
blind.sense_status=SENSESTATUS_OPAQUE;
blind.last_sense_ok=millis();
} else if (filtered>=blind.sense_end_lower && filtered<=blind.sense_end_upper) {
blind.sense_status=SENSESTATUS_END;
blind.last_sense_ok=millis();
}
}
void checkModes(blindmodel &blind) {
switch(blind.mode) {
case MODE_FIND_END:
switch(blind.mode_find_end_state) {
case 0: //drive up until end sensed
blind.speed=-100; //up
if (blind1.sense_status==SENSESTATUS_END) {
blind.speed=0; //stop. for safety
blind.mode_find_end_state++;
}
break;
case 1: //drive down slowly until passed end maker
blind.speed=10; //down slow
if (blind1.sense_status!=SENSESTATUS_END) {
blind.speed=0; //stop
blind.position=0;
//blind.mode=MODE_IDLE;
blind.mode=MODE_MEASURE_SPEED; //next measure speed
blind.mode_find_end_state=0; //reset
}
break;
}
break;
case MODE_MEASURE_SPEED:
switch(blind.mode_measure_speed_state) {
case 0: //drive down, start timing at clear
blind.speed=100; //down
if (blind1.sense_status==SENSESTATUS_CLEAR) {
blind.timing_start=millis();
blind.mode_measure_speed_state++;
}
break;
case 1: //on clear section
blind.speed=100; //down
if (blind1.sense_status==SENSESTATUS_OPAQUE) { //wait for opaque section
blind.mode_measure_speed_state++;
}
break;
case 2: //on opaque section
blind.speed=100; //down
if (blind1.sense_status==SENSESTATUS_CLEAR) { //wait for clear section
blind.speedfactor=(blind.length_clear+blind.length_opaque)/ ((millis()-blind.timing_start)/1000.0); //calculate length per second
Serial.print("speedfactor=");
Serial.print(blind.speedfactor);
Serial.println(" mm/s");
blind.position = blind.length_opaque+blind.length_clear+blind.start_first_clear; //set position
blind.speed=0; //stop
blind.mode_measure_speed_state=0; // reset
blind.mode=MODE_IDLE;
}
break;
}
break;
case MODE_GO_TO_POS:
break;
}
}
/*
2021-01-31 12:08:48 +00:00
void loop() {
int pwm;
for (pwm = 0; pwm <= 100; pwm++)
{
M1.setmotor( _CW, pwm);
M2.setmotor(_CW, pwm);
Serial.print("Clockwise PWM: ");
Serial.println(pwm);
delay(100);
}
Serial.println("Motor STOP");
M1.setmotor(_STOP);
M2.setmotor( _STOP);
delay(1000);
for (pwm = 0; pwm <= 100; pwm++)
{
M1.setmotor(_CCW, pwm);
//delay(1);
M2.setmotor(_CCW, pwm);
Serial.print("Counterclockwise PWM: ");
Serial.println(pwm);
delay(100);
}
Serial.println("Motor A&B STANDBY");
M1.setmotor(_STANDBY);
M2.setmotor( _STANDBY);
delay(1000);
}
*/