/* Copyright (C) 2011 James Coliz, Jr. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. */ #include #include #include "RF24.h" #include "nRF24L01.h" #undef SERIAL_DEBUG #ifdef SERIAL_DEBUG #define IF_SERIAL_DEBUG(x) (x) #else #define IF_SERIAL_DEBUG(x) #endif // Avoid spurious warnings #undef PROGMEM #define PROGMEM __attribute__(( section(".progmem.data") )) #undef PSTR #define PSTR(s) (__extension__({static prog_char __c[] PROGMEM = (s); &__c[0];})) /******************************************************************/ void RF24::csn(int mode) { SPI.setDataMode(SPI_MODE0); SPI.setClockDivider(SPI_CLOCK_DIV8); digitalWrite(csn_pin,mode); } /******************************************************************/ void RF24::ce(int mode) { digitalWrite(ce_pin,mode); } /******************************************************************/ uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len) { uint8_t status; csn(LOW); status = SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) ); while ( len-- ) *buf++ = SPI.transfer(0xff); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::read_register(uint8_t reg) { csn(LOW); SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) ); uint8_t result = SPI.transfer(0xff); csn(HIGH); return result; } /******************************************************************/ uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len) { uint8_t status; csn(LOW); status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) ); while ( len-- ) SPI.transfer(*buf++); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::write_register(uint8_t reg, uint8_t value) { uint8_t status; IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\n\r"),reg,value)); csn(LOW); status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) ); SPI.transfer(value); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::write_payload(const void* buf, uint8_t len) { uint8_t status; const uint8_t* current = (const uint8_t*)buf; csn(LOW); status = SPI.transfer( W_TX_PAYLOAD ); uint8_t data_len = min(len,payload_size); uint8_t blank_len = payload_size - data_len; while ( data_len-- ) SPI.transfer(*current++); while ( blank_len-- ) SPI.transfer(0); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::read_payload(void* buf, uint8_t len) { uint8_t status; uint8_t* current = (uint8_t*)buf; csn(LOW); status = SPI.transfer( R_RX_PAYLOAD ); uint8_t data_len = min(len,payload_size); uint8_t blank_len = payload_size - data_len; while ( data_len-- ) *current++ = SPI.transfer(0xff); while ( blank_len-- ) SPI.transfer(0xff); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::flush_rx(void) { uint8_t status; csn(LOW); status = SPI.transfer( FLUSH_RX ); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::flush_tx(void) { uint8_t status; csn(LOW); status = SPI.transfer( FLUSH_TX ); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::get_status(void) { uint8_t status; csn(LOW); status = SPI.transfer( NOP ); csn(HIGH); return status; } /******************************************************************/ void RF24::print_status(uint8_t status) { printf_P(PSTR("STATUS=%02x: RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\n\r"), status, (status & _BV(RX_DR))?1:0, (status & _BV(TX_DS))?1:0, (status & _BV(MAX_RT))?1:0, ((status >> RX_P_NO) & B111), (status & _BV(TX_FULL))?1:0 ); } /******************************************************************/ void RF24::print_observe_tx(uint8_t value) { printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\n\r"), value, (value >> PLOS_CNT) & B1111, (value >> ARC_CNT) & B1111 ); } /******************************************************************/ RF24::RF24(uint8_t _cepin, uint8_t _cspin): ce_pin(_cepin), csn_pin(_cspin), payload_size(32), ack_payload_available(false) { } /******************************************************************/ void RF24::setChannel(uint8_t channel) { write_register(RF_CH,min(channel,127)); } /******************************************************************/ void RF24::setPayloadSize(uint8_t size) { payload_size = min(size,32); } /******************************************************************/ uint8_t RF24::getPayloadSize(void) { return payload_size; } /******************************************************************/ void RF24::printDetails(void) { uint8_t buffer[5]; uint8_t status = read_register(RX_ADDR_P0,buffer,5); print_status(status); printf_P(PSTR("RX_ADDR_P0 = 0x")); uint8_t *bufptr = buffer + 5; while( bufptr-- > buffer ) printf_P(PSTR("%02x"),*bufptr); printf_P(PSTR("\n\r")); status = read_register(RX_ADDR_P1,buffer,5); printf_P(PSTR("RX_ADDR_P1 = 0x")); bufptr = buffer + 5; while( bufptr-- > buffer ) printf_P(PSTR("%02x"),*bufptr); printf_P(PSTR("\n\r")); status = read_register(RX_ADDR_P2,buffer,1); printf_P(PSTR("RX_ADDR_P2 = 0x%02x"),*buffer); printf_P(PSTR("\n\r")); status = read_register(RX_ADDR_P3,buffer,1); printf_P(PSTR("RX_ADDR_P3 = 0x%02x"),*buffer); printf_P(PSTR("\n\r")); status = read_register(TX_ADDR,buffer,5); printf_P(PSTR("TX_ADDR = 0x")); bufptr = buffer + 5; while( bufptr-- > buffer ) printf_P(PSTR("%02x"),*bufptr); printf_P(PSTR("\n\r")); status = read_register(RX_PW_P0,buffer,1); printf_P(PSTR("RX_PW_P0 = 0x%02x\n\r"),*buffer); status = read_register(RX_PW_P1,buffer,1); printf_P(PSTR("RX_PW_P1 = 0x%02x\n\r"),*buffer); read_register(EN_AA,buffer,1); printf_P(PSTR("EN_AA = %02x\n\r"),*buffer); read_register(EN_RXADDR,buffer,1); printf_P(PSTR("EN_RXADDR = %02x\n\r"),*buffer); read_register(RF_CH,buffer,1); printf_P(PSTR("RF_CH = %02x\n\r"),*buffer); } /******************************************************************/ void RF24::begin(void) { pinMode(ce_pin,OUTPUT); pinMode(csn_pin,OUTPUT); ce(LOW); csn(HIGH); SPI.begin(); SPI.setBitOrder(MSBFIRST); SPI.setDataMode(SPI_MODE0); SPI.setClockDivider(SPI_CLOCK_DIV8); // Set generous timeouts, to make testing a little easier write_register(SETUP_RETR,(B1111 << ARD) | (B1111 << ARC)); // Reset current status write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); // Initialize CRC write_register(CONFIG, _BV(EN_CRC) ); // Flush buffers flush_rx(); flush_tx(); // Set up default configuration. Callers can always change it later. setChannel(1); } /******************************************************************/ void RF24::startListening(void) { write_register(CONFIG, read_register(CONFIG) | _BV(PWR_UP) | _BV(PRIM_RX)); write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); // Restore the pipe0 adddress write_register(RX_ADDR_P0, reinterpret_cast(&pipe0_reading_address), 5); // Flush buffers flush_rx(); // Go! ce(HIGH); // wait for the radio to come up (130us actually only needed) delayMicroseconds(130); } /******************************************************************/ void RF24::stopListening(void) { ce(LOW); } /******************************************************************/ void RF24::powerDown(void) { write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP)); } /******************************************************************/ boolean RF24::write( const void* buf, uint8_t len ) { boolean result = false; // Transmitter power-up write_register(CONFIG, ( read_register(CONFIG) | _BV(PWR_UP) ) & ~_BV(PRIM_RX) ); delay(2); // Send the payload write_payload( buf, len ); // Allons! ce(HIGH); // IN the end, the send should be blocking. It comes back in 60ms worst case, or much faster // if I tighted up the retry logic. (Default settings will be 750us. // Monitor the send uint8_t observe_tx; uint8_t status; uint8_t retries = 255; do { status = read_register(OBSERVE_TX,&observe_tx,1); IF_SERIAL_DEBUG(Serial.print(status,HEX)); IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX)); if ( ! retries-- ) { IF_SERIAL_DEBUG(printf("ABORTED: too many retries\n\r")); break; } } while( ! ( status & ( _BV(TX_DS) | _BV(MAX_RT) ) ) ); if ( status & _BV(TX_DS) ) result = true; IF_SERIAL_DEBUG(Serial.print(result?"...OK.":"...Failed")); ack_payload_available = ( status & _BV(RX_DR) ); if ( ack_payload_available ) { write_register(STATUS,_BV(RX_DR) ); ack_payload_length = read_payload_length(); IF_SERIAL_DEBUG(Serial.print("[AckPacket]/")); IF_SERIAL_DEBUG(Serial.println(ack_payload_length,DEC)); } // Yay, we are done. ce(LOW); // Power down write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP)); // Reset current status write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); // Flush buffers flush_tx(); return result; } /******************************************************************/ uint8_t RF24::read_payload_length(void) { uint8_t result = 0; csn(LOW); SPI.transfer( R_RX_PL_WID ); result = SPI.transfer(0xff); csn(HIGH); return result; } /******************************************************************/ boolean RF24::available(void) { return available(NULL); } /******************************************************************/ boolean RF24::available(uint8_t* pipe_num) { uint8_t status = get_status(); IF_SERIAL_DEBUG(print_status(status)); boolean result = ( status & _BV(RX_DR) ); if (result) { // If the caller wants the pipe number, include that if ( pipe_num ) *pipe_num = ( status >> RX_P_NO ) & B111; // Clear the status bit // ??? Should this REALLY be cleared now? Or wait until we // actually READ the payload? write_register(STATUS,_BV(RX_DR) ); // Handle ack payload receipt if ( status & _BV(TX_DS) ) { write_register(STATUS,_BV(TX_DS)); } } return result; } /******************************************************************/ boolean RF24::read( void* buf, uint8_t len ) { // was this the last of the data available? boolean result = false; // Fetch the payload read_payload( buf, len ); uint8_t fifo_status; read_register(FIFO_STATUS,&fifo_status,1); if ( fifo_status & _BV(RX_EMPTY) ) result = true; return result; } /******************************************************************/ void RF24::openWritingPipe(uint64_t value) { // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01 // expects it LSB first too, so we're good. write_register(RX_ADDR_P0, reinterpret_cast(&value), 5); write_register(TX_ADDR, reinterpret_cast(&value), 5); write_register(RX_PW_P0,min(payload_size,32)); } /******************************************************************/ void RF24::openReadingPipe(uint8_t child, uint64_t value) { const uint8_t child_pipe[] = { RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 }; const uint8_t child_payload_size[] = { RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5 }; const uint8_t child_pipe_enable[] = { ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5 }; // If this is pipe 0, cache the address. This is needed because // openWritingPipe() will overwrite the pipe 0 address, so // startListening() will have to restore it. if (child == 0) pipe0_reading_address = value; if (child < 5) { // For pipes 2-5, only write the LSB if ( child < 2 ) write_register(child_pipe[child], reinterpret_cast(&value), 5); else write_register(child_pipe[child], reinterpret_cast(&value), 1); write_register(child_payload_size[child],payload_size); // Note this is kind of an inefficient way to set up these enable bits, bit I thought it made // the calling code more simple uint8_t en_rx; read_register(EN_RXADDR,&en_rx,1); en_rx |= _BV(child_pipe_enable[child]); write_register(EN_RXADDR,en_rx); } } /******************************************************************/ void RF24::toggle_features(void) { csn(LOW); SPI.transfer( ACTIVATE ); SPI.transfer( 0x73 ); csn(HIGH); } /******************************************************************/ void RF24::enableAckPayload(void) { // // enable ack payload and dynamic payload features // write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) ); // If it didn't work, the features are not enabled if ( ! read_register(FEATURE) ) { // So enable them and try again toggle_features(); write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) ); } IF_SERIAL_DEBUG(printf("FEATURE=%i\n\r",read_register(FEATURE))); // // Enable dynamic payload on pipe 0 // write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0)); } /******************************************************************/ void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len) { const uint8_t* current = (const uint8_t*)buf; csn(LOW); SPI.transfer( W_ACK_PAYLOAD | ( pipe & B111 ) ); uint8_t data_len = min(len,32); while ( data_len-- ) SPI.transfer(*current++); csn(HIGH); } /******************************************************************/ boolean RF24::isAckPayloadAvailable(void) { boolean result = ack_payload_available; ack_payload_available = false; return result; } /******************************************************************/ void RF24::setAutoAck(bool enable) { if ( enable ) write_register(EN_AA, B111111); else write_register(EN_AA, 0); } /******************************************************************/ boolean RF24::testCarrier(void) { return ( read_register(CD) & 1 ); } /******************************************************************/ void RF24::setDataRate(rf24_datarate_e speed) { uint8_t setup = read_register(RF_SETUP) & RF_DR; if (speed == RF24_2MBPS) setup |= RF_DR; write_register(RF_SETUP,setup); } // vim:ai:cin:sts=2 sw=2 ft=cpp