/* Copyright (C) 2011 James Coliz, Jr. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. */ #include #include #include "RF24.h" #include "nRF24L01.h" #undef SERIAL_DEBUG #ifdef SERIAL_DEBUG #define IF_SERIAL_DEBUG(x) (x) #else #define IF_SERIAL_DEBUG(x) #endif /******************************************************************/ void RF24::csn(int mode) { digitalWrite(csn_pin,mode); } /******************************************************************/ void RF24::ce(int mode) { digitalWrite(ce_pin,mode); } /******************************************************************/ uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len) { uint8_t status; csn(LOW); status = SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) ); while ( len-- ) *buf++ = SPI.transfer(0xff); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len) { uint8_t status; csn(LOW); status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) ); while ( len-- ) SPI.transfer(*buf++); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::write_register(uint8_t reg, uint8_t value) { uint8_t status; csn(LOW); status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) ); SPI.transfer(value); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::write_payload(const void* buf, uint8_t len) { uint8_t status; const uint8_t* current = (const uint8_t*)buf; csn(LOW); status = SPI.transfer( W_TX_PAYLOAD ); uint8_t data_len = min(len,payload_size); uint8_t blank_len = payload_size - data_len; while ( data_len-- ) SPI.transfer(*current++); while ( blank_len-- ) SPI.transfer(0); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::read_payload(void* buf, uint8_t len) { uint8_t status; uint8_t* current = (uint8_t*)buf; csn(LOW); status = SPI.transfer( R_RX_PAYLOAD ); uint8_t data_len = min(len,payload_size); uint8_t blank_len = payload_size - data_len; while ( data_len-- ) *current++ = SPI.transfer(0xff); while ( blank_len-- ) SPI.transfer(0xff); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::flush_rx(void) { uint8_t status; csn(LOW); status = SPI.transfer( FLUSH_RX ); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::flush_tx(void) { uint8_t status; csn(LOW); status = SPI.transfer( FLUSH_TX ); csn(HIGH); return status; } /******************************************************************/ uint8_t RF24::get_status(void) { uint8_t status; csn(LOW); status = SPI.transfer( NOP ); csn(HIGH); return status; } /******************************************************************/ void RF24::print_status(uint8_t status) { printf("STATUS=%02x: RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\n\r", status, (status & _BV(RX_DR))?1:0, (status & _BV(TX_DS))?1:0, (status & _BV(MAX_RT))?1:0, ((status >> RX_P_NO) & B111), (status & _BV(TX_FULL))?1:0 ); } /******************************************************************/ void RF24::print_observe_tx(uint8_t value) { printf("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\n\r", value, (value >> PLOS_CNT) & B1111, (value >> ARC_CNT) & B1111 ); } /******************************************************************/ RF24::RF24(int _cepin, int _cspin): ce_pin(_cepin), csn_pin(_cspin), payload_size(32) { } /******************************************************************/ void RF24::setChannel(int channel) { write_register(RF_CH,min(channel,127)); } /******************************************************************/ void RF24::setPayloadSize(uint8_t size) { payload_size = min(size,32); } /******************************************************************/ uint8_t RF24::getPayloadSize(void) { return payload_size; } /******************************************************************/ void RF24::printDetails(void) { uint8_t buffer[5]; uint8_t status = read_register(RX_ADDR_P0,buffer,5); print_status(status); printf("RX_ADDR_P0 = 0x",buffer); uint8_t *bufptr = buffer + 5; while( bufptr-- > buffer ) printf("%02x",*bufptr); printf("\n\r"); status = read_register(RX_ADDR_P1,buffer,5); printf("RX_ADDR_P1 = 0x",buffer); bufptr = buffer + 5; while( bufptr-- > buffer ) printf("%02x",*bufptr); printf("\n\r"); status = read_register(RX_ADDR_P2,buffer,1); printf("RX_ADDR_P2 = 0x%02x",*buffer); printf("\n\r"); status = read_register(RX_ADDR_P3,buffer,1); printf("RX_ADDR_P3 = 0x%02x",*buffer); printf("\n\r"); status = read_register(TX_ADDR,buffer,5); printf("TX_ADDR = 0x",buffer); bufptr = buffer + 5; while( bufptr-- > buffer ) printf("%02x",*bufptr); printf("\n\r"); read_register(EN_AA,buffer,1); printf("EN_AA = %02x\n\r",*buffer); read_register(EN_RXADDR,buffer,1); printf("EN_RXADDR = %02x\n\r",*buffer); read_register(RF_CH,buffer,1); printf("RF_CH = %02x\n\r",*buffer); } /******************************************************************/ void RF24::begin(void) { pinMode(ce_pin,OUTPUT); pinMode(csn_pin,OUTPUT); ce(LOW); csn(HIGH); SPI.begin(); SPI.setBitOrder(MSBFIRST); SPI.setDataMode(SPI_MODE0); SPI.setClockDivider(SPI_CLOCK_DIV8); // Set generous timeouts, to make testing a little easier write_register(SETUP_RETR,(B1111 << ARD) | (B1111 << ARC)); // Reset current status write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); // Flush buffers flush_rx(); flush_tx(); // Set up default configuration. Callers can always change it later. setChannel(1); setPayloadSize(8); } /******************************************************************/ void RF24::startListening(void) { write_register(CONFIG, _BV(EN_CRC) | _BV(PWR_UP) | _BV(PRIM_RX)); write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); // Flush buffers flush_rx(); // Go! ce(HIGH); // wait for the radio to come up (130us actually only needed) delay(1); } /******************************************************************/ void RF24::stopListening(void) { ce(LOW); } /******************************************************************/ boolean RF24::write( const void* buf, uint8_t len ) { boolean result = false; // Transmitter power-up write_register(CONFIG, _BV(EN_CRC) | _BV(PWR_UP)); // Send the payload write_payload( buf, len ); // Allons! ce(HIGH); // IN the end, the send should be blocking. It comes back in 60ms worst case, or much faster // if I tighted up the retry logic. (Default settings will be 750us. // Monitor the send uint8_t observe_tx; uint8_t status; do { status = read_register(OBSERVE_TX,&observe_tx,1); IF_SERIAL_DEBUG(Serial.print(status,HEX)); IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX)); } while( ! ( status & ( _BV(TX_DS) | _BV(MAX_RT) ) ) ); if ( status & _BV(TX_DS) ) result = true; IF_SERIAL_DEBUG(Serial.println(result?"...OK.":"...Failed")); // Yay, we are done. ce(LOW); // Power down write_register(CONFIG, _BV(EN_CRC) ); // Reset current status write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); // Flush buffers flush_tx(); return result; } /******************************************************************/ boolean RF24::available(void) { return available(NULL); } /******************************************************************/ boolean RF24::available(uint8_t* pipe_num) { uint8_t status = get_status(); boolean result = ( status & _BV(RX_DR) ); if (result) { IF_SERIAL_DEBUG(print_status(status)); // If the caller wants the pipe number, include that if ( pipe_num ) *pipe_num = ( status >> RX_P_NO ) & B111; // Clear the status bit // ??? Should this REALLY be cleared now? Or wait until we // actually READ the payload? write_register(STATUS,_BV(RX_DR) ); } return result; } /******************************************************************/ boolean RF24::read( void* buf, uint8_t len ) { // was this the last of the data available? boolean result = false; // Fetch the payload read_payload( buf, len ); uint8_t fifo_status; read_register(FIFO_STATUS,&fifo_status,1); if ( fifo_status & _BV(RX_EMPTY) ) result = true; return result; } /******************************************************************/ void RF24::openWritingPipe(uint64_t value) { // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01 // expects it LSB first too, so we're good. write_register(RX_ADDR_P0, reinterpret_cast(&value), 5); write_register(TX_ADDR, reinterpret_cast(&value), 5); write_register(RX_PW_P0,min(payload_size,32)); } /******************************************************************/ void RF24::openReadingPipe(uint8_t child, uint64_t value) { const uint8_t child_pipe[] = { RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 }; const uint8_t child_payload_size[] = { RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5 }; const uint8_t child_pipe_enable[] = { ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5 }; if (--child < 5) { // For pipes 2-5, only write the LSB if ( !child ) write_register(child_pipe[child], reinterpret_cast(&value), 5); else write_register(child_pipe[child], reinterpret_cast(&value), 1); write_register(child_payload_size[child],payload_size); // Note this is kind of an inefficient way to set up these enable bits, bit I thought it made // the calling code more simple uint8_t en_rx; read_register(EN_RXADDR,&en_rx,1); en_rx |= _BV(child_pipe_enable[child]); write_register(EN_RXADDR,en_rx); } } // vim:ai sts=2 sw=2 ft=cpp