lightmeter/lightmeter.ino

1366 lines
44 KiB
C++

//STM32F103C, 64k flash
//upload method: serial (A9 to RX, A10 to TX)
//To upload set Boot0 jumper to 1 (the one further away from reset btn) and press reset (stm will boot from flash wich contains uart to flash uploader)
//upload via arduino IDE
//To boot program after restart set Boot0 jumper to 0
//Letters 5x7 at Size 1
#include <math.h>
//#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h> // http://www.instructables.com/id/Monochrome-096-i2c-OLED-display-with-arduino-SSD13/
//128 x 64 px
#define WIDTH 128
#define HEIGHT 64
#include <EEPROM.h>
#include <BH1750.h> //from: https://github.com/mysensors/MySensorsArduinoExamples/tree/master/libraries/BH1750
BH1750 lightMeter;
#define INCIDENT_CORRECTION_FACTOR 1.17
//with 1125 25 225 2465 120
//wihtout 1335 32 265 2865 145
/*1,186666667
1,28
1,177777778
1,162271805
1,208333333*/
#define PIN_LDR 0 //A0
#define PIN_BRIGHTMODE 1 //A1
#define PIN_VBAT 2 //A2
#define PIN_LED 8 //White status led A8
#define PIN_TRIGGER PB8
#define PIN_BTNLEFT PA15
#define PIN_BTNCENTER PB4
#define PIN_BTNRIGHT PB5
#define PIN_ON PB9 //pin for hardware latch
#define TIME_AUTOPOWEROFF 120000
#define TIME_METERINGMODESELECTION_CLOSE 60000
#define LDRDELAY 100 //delay between ldr switches. New analog_high or low reading after that time. Transistor for lower value pulldown resistor switches in between
#define LDRFILTERDELAY 1 //delay in ms between readings sequent readings for smoothing . LDRFILTERDELAY*64 > LDRDELAY
#define LDRSWITCHDELAY 30 //time to wait after transistor switched
#define INCIDENTDELAY 100 //minimum delay between incident sensor (BH1750) readings
#define DEBOUNCETIME 20 //time to not check for inputs after key press
#define BUTTONTIMEHOLD 750 //time for button hold
#define VOLTAGE_WARN 3.4 //voltage per cell //TODO implement warning
//float shuttertimes1[]={1,1.0/2, 1.0/4, 1.0/8, 1.0/15, 1.0/30, 1.0/60, 1.0/125, 1.0/250, 1.0/500, 1.0/1000, 1.0/2000, 1.0/4000, 1.0/8000};
float shuttertimes1[]={64,32,16,8,4,2,1,1.0/2, 1.0/4, 1.0/8, 1.0/15, 1.0/30, 1.0/60, 1.0/125, 1.0/250, 1.0/500, 1.0/1000, 1.0/2000, 1.0/4000, 1.0/8000};
#define SHUTTERTIMES1_MAXINDEX 19
float shuttertimes2[]={30,25,20,15,13,10,8,6,5,4,3.2,2.5,2,1.6,1.3,1,0.8,0.6,0.5,0.4,0.3,1.0/4,1.0/5,1.0/6,1.0/8,1.0/10,1.0/13,1.0/15,1.0/20,1.0/25,1.0/30,1.0/40,1.0/50,1.0/60,1.0/80,1.0/100,1.0/125,1.0/160,1.0/200,1.0/250,1.0/320,1.0/400,1.0/500,1.0/640,1.0/800,1.0/1000,1.0/1250,1.0/1600,1.0/2000,1.0/2500,1.0/3200,1.0/4000};
#define SHUTTERTIMES2_MAXINDEX 51
String settingsnameShutterSelectionMode[]={"Analog","Digital"}; //names for tables
#define MAXIMUM_SHUTTERSELECTIONMODES 2
float aperaturesFull[]={1,1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22, 32};
#define APERATURESFULL_MAXINDEX 10
float aperaturesHalf[]={1, 1.2, 1.4, 1.7, 2, 2.4, 2.8, 3.4, 4, 4.8, 5.6, 6.7, 8, 9.5, 11, 13, 16, 19, 22};
#define APERATURESHALF_MAXINDEX 18
float aperaturesThird[]={1, 1.1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.5, 2.8, 3.2, 3.5, 4, 4.5, 5.0, 5.6, 6.3, 7.1, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 25, 29, 32, 36, 40, 45};
#define APERATURESTHIRD_MAXINDEX 33
String settingsnameAperatureSelectionMode[]={"Full","Half","Third"}; //names for tables
#define MAXIMUM_APERATURESELECTIONMODES 3
float isoFull[]={12,25,50,100,200,400,800,1600,3200,6400,12500,25600};
float isoThird[]={12,16,20,25,32,40,50,64,80,100,125,160,200,250,320,400,500,640,800,1000,1250,1600,2000,2500,3200,4000,5000,6400,8000,10000,12500,16000,20000,25600};
long loopmillis=0; //only use one millis reading each loop
long last_ldrReading=0;
long last_ldrReadingFilter=0;
long last_incidentReading=0;
long millis_lastchange=0;
long millis_lastinput=0;
long millis_ledoff=0; //for led blink
long millis_opened_meteringmodeselection=0; //time when meteringmodeselecten was opened (for led flashlight timing)
#define DELAY_METERINGMODESELECTION_FLASHLIGHT 2000
long timebuttonpressed_trigger;
long timebuttonpressed_left;
long timebuttonpressed_center;
long timebuttonpressed_right;
//Short press (true when button short pressed, on release)
boolean button_trigger=false;
boolean button_left=false;
boolean button_center=false;
boolean button_right=false;
//long press (true when button is held down for BUTTONTIMEHOLD, on time elapsed)
boolean button_hold_trigger=false;
boolean button_hold_left=false;
boolean button_hold_center=false;
boolean button_hold_right=false;
float vbat=100;
struct Settings {
uint8_t minimumAperatureIndex; //see corresponding aperatures table
uint8_t aperatureSelectionMode; //1=Full, 2=Half, 3=Third
uint8_t shutterSelectionMode; //index for which shuttertimes table to use
uint8_t ISOSelectionMode; //1=Full, 2=Thirds
};
bool settingsStructEqual(Settings a, Settings b){
if (a.minimumAperatureIndex!=b.minimumAperatureIndex || a.aperatureSelectionMode!=b.aperatureSelectionMode || a.shutterSelectionMode!=b.shutterSelectionMode || a.ISOSelectionMode!=b.ISOSelectionMode){
return false;
}
return true;
}
Settings userSettings= {1,1, 1,2};
Settings eeprom_userSettings; //to store current eeprom status
#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RESET);
uint16_t incident=0; //incident reading from bh1750
uint16_t analog_low=0; //better for low light
uint16_t analog_high=0; //better for bright light (higher pulldown resistor for ldr)
uint16_t analog_reading_filtering=0;
uint8_t analog_reading_count=0;
float ev=0; //calculated EV from LDR readings (reflected) or from Luxmeter (incident)
float ev_min=6,ev_max=12,ev_last=8;
float showAperature=0;
float showShutter=0;
//Usersettings
float setAperature=8; //set to use aperature. 0 for auto
float setShutter=0; //set to use shutter time, 0 for auto
uint16_t setISO=100; //set to ISO
float eeprom_setAperature=0; //set to use aperature. 0 for auto
float eeprom_setShutter=0; //set to use shutter time, 0 for auto
uint16_t eeprom_setISO=0; //set to ISO
#define EEPROMADDRESS_APERATURE 0x801F000 //float = 32bit = 4byte
#define EEPROMADDRESS_SHUTTER 0x801F004 //float = 32bit = 4byte
#define EEPROMADDRESS_ISO 0x801F008 //uint16_T 16bit = 2byte
#define EEPROMADDRESS_METERINGMODE 0x801F00A //uint8_t 1byte
#define EEPROMADDRESS_USERSETTINGS 0x801F00B //Settings struct
enum displaymode {
lightmeter,
settings,
meteringmodeselection
};
displaymode displaymode=lightmeter;
uint8_t settings_selectedItem=0; //in settings display
String settingStrings[]={"ISO:","F-Stops:","Timetable:","Turn Off"};
#define SETTINGS_SELECTEDITEM_MAX 3 //inclusive. 2 means 3 items available
boolean settings_itemActive=false; //item in settings selected to change value
#define DISPLAY_UPDATEDELAY 200
long last_displayupdate=0;
#define METERINGMODE_REFLECTIVE 0
#define METERINGMODE_INCIDENT 1
uint8_t meteringmode=METERINGMODE_REFLECTIVE;
uint8_t eeprom_meteringmode=0;
bool eeprom_red=false; //false, if eeprom need to be red
bool debug_printreadings=false;
uint16_t debug_analog_high=0;
uint16_t debug_analog_low=0;
char tempstring[16]; //for dtostrf //dtostrf(modefactor,1,3,tempstring);
#if (SSD1306_LCDHEIGHT != 64)
#error("Height incorrect, please fix Adafruit_SSD1306.h!");
#endif
//Icons. Exported as .xbm from gimp and renamed to .c
#include "icon_incident.c"
#include "icon_spot.c"
#include "icon_arrow.c"
#include "icon_one_third.c"
#include "icon_one_half.c"
#include "icon_two_third.c"
void setup() {
Serial.begin(115200);
Serial.println("Started");
Serial.println("Init Display");
display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
display.clearDisplay();
display.display();
Serial.println("Init BH1750");
lightMeter.begin(BH1750_CONTINUOUS_HIGH_RES_MODE_2); //max reading=54612
//set measurement time (for higher resolution) http://www.raspberry-pi-geek.de/Magazin/2015/04/Digital-Light-Sensor-BH1750-am-Raspberry-Pi
//lightMeter.write8(71); //01000111 //high bit: 01000xxx bits 7,6,5
//lightMeter.write8(126); //01111110 //log bit: 011xxxxx bits 4,3,2,1,0
pinMode(PIN_LDR, INPUT_ANALOG);
pinMode(PIN_VBAT, INPUT_ANALOG);
pinMode(PIN_TRIGGER, INPUT_PULLUP);
pinMode(PIN_BTNLEFT, INPUT_PULLUP);
pinMode(PIN_BTNCENTER, INPUT_PULLUP);
pinMode(PIN_BTNRIGHT, INPUT_PULLUP);
pinMode(PIN_BRIGHTMODE, OUTPUT);
digitalWrite(PIN_BRIGHTMODE, LOW);
pinMode(PIN_ON, OUTPUT);
digitalWrite(PIN_ON, HIGH);
pinMode(PIN_LED, OUTPUT);
digitalWrite(PIN_LED, HIGH);//blink led on
delay(50);
digitalWrite(PIN_LED,LOW); //blink led off
millis_lastchange=millis();
Serial.println("Initialized");
if (!digitalRead(PIN_TRIGGER)){ //hold trigger button during power on activates serial debug printing
debug_printreadings=true;
}
}
bool saveSettingsToEEPROM(bool force){
bool _eepromwritten=false;
//checks and writes changes to eeprom
if (eeprom_setAperature!=setAperature || force){ //value change or write forced
EEPROM_writeAnything(EEPROMADDRESS_APERATURE, setAperature);
_eepromwritten=true;
}
if (eeprom_setShutter!=setShutter || force){ //value change or write forced
EEPROM_writeAnything(EEPROMADDRESS_SHUTTER, setShutter);
_eepromwritten=true;
}
if (eeprom_setISO!=setISO || force){ //value change or write forced
EEPROM_writeAnything(EEPROMADDRESS_ISO, setISO);
_eepromwritten=true;
}
if (eeprom_meteringmode!=meteringmode || force){ //one of the values change or write forced
EEPROM_writeAnything(EEPROMADDRESS_METERINGMODE, meteringmode);
_eepromwritten=true;
}
if (!settingsStructEqual(eeprom_userSettings,userSettings) || force){ //one of the values change or write forced
EEPROM_writeAnything(EEPROMADDRESS_USERSETTINGS, userSettings);
_eepromwritten=true;
}
return _eepromwritten;
}
void loop() {
loopmillis=millis(); //read millis for this cycle
if (!eeprom_red){ //only executed one time
eeprom_red=true;
readEEPROM();
}
handleInputs();
calculateFromEV();
updateDisplay();
checkLED();
}
void readEEPROM(){
if (!digitalRead(PIN_BTNLEFT) && !digitalRead(PIN_BTNCENTER) && !digitalRead(PIN_BTNRIGHT) ){ //push all front buttons (left, center, right) to restore default settings
digitalWrite(PIN_LED,HIGH);
delay(1000); //1s led on confirmation
digitalWrite(PIN_LED,LOW);
saveSettingsToEEPROM(true); //force writing. userSettings contains the default values at this point
delay(200);
digitalWrite(PIN_LED,HIGH);
delay(200); //1s led on confirmation
digitalWrite(PIN_LED,LOW);
delay(200);
digitalWrite(PIN_LED,HIGH);
delay(200); //1s led on confirmation
digitalWrite(PIN_LED,LOW);
delay(1000);
}
//read current eeprom
EEPROM_readAnything(EEPROMADDRESS_APERATURE, eeprom_setAperature);
EEPROM_readAnything(EEPROMADDRESS_SHUTTER, eeprom_setShutter);
EEPROM_readAnything(EEPROMADDRESS_ISO, eeprom_setISO);
EEPROM_readAnything(EEPROMADDRESS_METERINGMODE, eeprom_meteringmode);
EEPROM_readAnything(EEPROMADDRESS_USERSETTINGS, eeprom_userSettings);
Serial.println("");
Serial.println("EEPROM eeprom settings");
Serial.println(eeprom_setAperature);
Serial.println(eeprom_setShutter);
Serial.println(eeprom_setISO);
Serial.println("EEPROM eeprom_userSettings");
Serial.println(eeprom_userSettings.minimumAperatureIndex);
Serial.println(eeprom_userSettings.aperatureSelectionMode);
Serial.println(eeprom_userSettings.shutterSelectionMode);
Serial.println(eeprom_userSettings.ISOSelectionMode);
Serial.println("");
if (eeprom_userSettings.minimumAperatureIndex==255){ //after flashing eeprom contains FF.., check one value
for (int i=0;i<10;i++){ //blink a few times to show that eeprom was clean
delay(50);
digitalWrite(PIN_LED,HIGH);
delay(50); //1s led on confirmation
digitalWrite(PIN_LED,LOW);
}
}else{ //
//apply
setAperature=eeprom_setAperature;
setShutter=eeprom_setShutter;
setISO=eeprom_setISO;
meteringmode=eeprom_meteringmode;
userSettings=eeprom_userSettings;
}
}
void handleInputs()
{
//Short press (true when button short pressed, on release)
button_trigger=false;
button_left=false;
button_center=false;
button_right=false;
//long press (true when button is held down for BUTTONTIMEHOLD, on time elapsed)
button_hold_trigger=false;
button_hold_left=false;
button_hold_center=false;
button_hold_right=false;
if (millis()-millis_lastinput>DEBOUNCETIME) //Button debouncing
{
//Trigger
if (timebuttonpressed_trigger == 0 && !digitalRead(PIN_TRIGGER)){ //first time pressed down. (low when pressed)
timebuttonpressed_trigger=loopmillis; //set time of button press
}else if(timebuttonpressed_trigger != 0 && digitalRead(PIN_TRIGGER)){ //button released (was pressed)
if (loopmillis-timebuttonpressed_trigger < BUTTONTIMEHOLD){ //short press
button_trigger=true;
}
timebuttonpressed_trigger=0; //re-enable after short press and release from hold
}else if(loopmillis-timebuttonpressed_trigger >= BUTTONTIMEHOLD && timebuttonpressed_trigger>0){ //held down long enough and not already hold triggered
button_hold_trigger=true;
timebuttonpressed_trigger=-1; //-1 as flag for hold triggered
}
//Left
if (timebuttonpressed_left == 0 && !digitalRead(PIN_BTNLEFT)){ //first time pressed down. (low when pressed)
timebuttonpressed_left=loopmillis; //set time of button press
}else if(timebuttonpressed_left != 0 && digitalRead(PIN_BTNLEFT)){ //button released (was pressed)
if (loopmillis-timebuttonpressed_left < BUTTONTIMEHOLD){ //short press
button_left=true;
}
timebuttonpressed_left=0; //re-enable after short press and release from hold
}else if(loopmillis-timebuttonpressed_left >= BUTTONTIMEHOLD && timebuttonpressed_left>0){ //held down long enough and not already hold triggered
button_hold_left=true;
timebuttonpressed_left=-1; //-1 as flag for hold triggered
}
//Center
if (timebuttonpressed_center == 0 && !digitalRead(PIN_BTNCENTER)){ //first time pressed down. (low when pressed)
timebuttonpressed_center=loopmillis; //set time of button press
}else if(timebuttonpressed_center != 0 && digitalRead(PIN_BTNCENTER)){ //button released (was pressed)
if (loopmillis-timebuttonpressed_center < BUTTONTIMEHOLD){ //short press
button_center=true;
}
timebuttonpressed_center=0; //re-enable after short press and release from hold
}else if(loopmillis-timebuttonpressed_center >= BUTTONTIMEHOLD && timebuttonpressed_center>0){ //held down long enough and not already hold triggered
button_hold_center=true;
timebuttonpressed_center=-1; //-1 as flag for hold triggered
}
//Right
if (timebuttonpressed_right == 0 && !digitalRead(PIN_BTNRIGHT)){ //first time pressed down. (low when pressed)
timebuttonpressed_right=loopmillis; //set time of button press
}else if(timebuttonpressed_right != 0 && digitalRead(PIN_BTNRIGHT)){ //button released (was pressed)
if (loopmillis-timebuttonpressed_right < BUTTONTIMEHOLD){ //short press
button_right=true;
}
timebuttonpressed_right=0; //re-enable after short press and release from hold
}else if(loopmillis-timebuttonpressed_right >= BUTTONTIMEHOLD && timebuttonpressed_right>0){ //held down long enough and not already hold triggered
button_hold_right=true;
timebuttonpressed_right=-1; //-1 as flag for hold triggered
}
}
/*
if (button_trigger || button_left || button_center || button_right){
Serial.println("Buttons short:");
Serial.print(button_trigger);
Serial.print(button_left);
Serial.print(button_center);
Serial.println(button_right);
}
if (button_hold_trigger || button_hold_left || button_hold_center || button_hold_right){
Serial.println("Buttons long:");
Serial.print(button_hold_trigger);
Serial.print(button_hold_left);
Serial.print(button_hold_center);
Serial.println(button_hold_right);
}
*/
//Voltage
float _vbat=map(analogRead(PIN_VBAT), 0,3560,0,8200)/1000.0; //180k and 300k voltage divider. 8,4V -> 3,15V=3910
if (_vbat<vbat){
vbat=_vbat; //voltage can only decrease
}
//LDR
if ( loopmillis-last_ldrReadingFilter>LDRFILTERDELAY && loopmillis-last_ldrReading>LDRSWITCHDELAY) //multiple successive reading for filtering. each LDRFILTERDELAY ms and wait LDRSWITCHDELAY for first reading
{
analog_reading_filtering+=analogRead(PIN_LDR);
analog_reading_count++;
last_ldrReadingFilter=loopmillis;
}
if ( loopmillis-last_ldrReading>LDRDELAY ) //time over for one reading (low or high)
{
if (!digitalRead(PIN_BRIGHTMODE)){
analog_low=analog_reading_filtering/analog_reading_count;
}else{
analog_high=analog_reading_filtering/analog_reading_count;
if (debug_printreadings){
Serial.print(analog_low);//for calibration output
Serial.print(";");
Serial.println(analog_high);
}
}
/*Serial.print(analog_reading_count);
Serial.print(" value=");
Serial.println(analog_reading_filtering);*/
analog_reading_count=0; //reset
analog_reading_filtering=0; //reset
digitalWrite(PIN_BRIGHTMODE, !digitalRead(PIN_BRIGHTMODE)); //switch modes
last_ldrReading=loopmillis;
}
//Lightsensor BH1750
if ( loopmillis-last_incidentReading>INCIDENTDELAY )
{
incident = lightMeter.readLightLevel(); //value in lux from sensor
last_incidentReading=loopmillis;
}
//Test asdf
/*
if ( !digitalRead(PIN_TRIGGER) ) {
Serial.println("roundAperature");
for (float i=0.1;i<30;i+=0.5){
Serial.print(i);
Serial.print(" -> ");
Serial.println(roundAperature(i,1));
}
Serial.println("roundShutter");
for (float i=1.0/8000;i<32;i*=2){
Serial.print(i,6);
Serial.print(" -> ");
Serial.print(roundShutter(i,2),6);
Serial.print(" -- ");
Serial.println(reciprocFloat(roundShutter(i,2)));
}
}
Serial.println("calculateShutter at iso 100 f2.8");
for (float i=-2;i<18;i+=0.25){
Serial.print(i);
Serial.print(" -> ");
float test_calcshutter=calculateShutter(i, (uint16_t)100, 2.8);
//Serial.println(test_calcshutter,6);
float test_showShutter=roundShutter(test_calcshutter,2);
Serial.print("rounded Shutter from "); Serial.print(test_calcshutter,6); Serial.print(" to "); Serial.println(test_showShutter,6); //asdf
if (test_showShutter>0.25) //check shuttertime
{ //show full seconds
Serial.print("int=");
Serial.print(int(test_showShutter));
if (test_showShutter-int(test_showShutter)>0){ //has decimals
Serial.print(" ,");
Serial.print((int)round( (test_showShutter-int(test_showShutter))*10)); //show one decimal
}
Serial.println("");
}else{ //show fraction of a second
Serial.print("frac= 1/");
int _frac_showShutter = (int) ( (1.0f/( (int)(test_showShutter*1000000) ) )*1000000 );
Serial.print( _frac_showShutter );
Serial.println("");
}
}
Serial.println("calculateAperature at iso 100 1/250s");
for (float i=-2;i<18;i+=0.25){
Serial.print(i);
Serial.print(" -> ");
Serial.println(calculateAperature(i, (uint16_t)100, 1.0/250),6);
}
}*/
switch(displaymode){
case lightmeter:
handleInputs_Lightmeter();
break;
case settings:
handleInputs_Settings();
break;
case meteringmodeselection:
handleInputs_Meteringmodeselection();
break;
}
if (millis()-millis_lastchange>TIME_AUTOPOWEROFF){
poweroff();
}
if ( button_trigger || button_left || button_center || button_right ) {
millis_lastchange=millis(); //for auto poweroff and auto closes
millis_lastinput=millis(); //for debouncing
}
}
void poweroff(){
bool _eepromwritten=saveSettingsToEEPROM(false); //save only changes to eeprom
digitalWrite(PIN_LED,HIGH); //Blink led
delay(100);
digitalWrite(PIN_LED,LOW);
if (_eepromwritten){
delay(100);
digitalWrite(PIN_LED,HIGH);
delay(100);
digitalWrite(PIN_LED,LOW);
}
digitalWrite(PIN_ON, LOW); //Turn off hardware latch
}
void handleInputs_Lightmeter()
{
if ( button_center ) { //open meteringmode selection
displaymode=meteringmodeselection;
millis_opened_meteringmodeselection=loopmillis;
}
if ( button_hold_center ) { //Go to Settings
displaymode=settings;
}
if (setShutter==0 && setAperature==0){ //Auto
//Value Change
if ( button_left ) {
}
if ( button_right ) {
}
//Change Mode
if ( button_hold_left ){ //Auto -> T
setShutter=showShutter;
setAperature=0;
}
if ( button_hold_right ){ //Auto -> Av
setAperature=showAperature;
setShutter=0;
}
}else if(setShutter==0){ //Aperature Priority
//Value Change
if ( button_left ) {
changeAperature(1); //Decrement Aperature
}
if ( button_right ) {
changeAperature(-1); //Increment Aperature
}
//Change Mode
if ( button_hold_left ){ //change from Aperature Priority to Auto, Av -> Auto
setAperature=0;
setShutter=0;
}
if ( button_hold_right ){ //Av -> T
setShutter=showShutter;
setAperature=0;
}
}else if (setAperature==0){ //Shutter Priority
//Value Change
if ( button_left ) {
changeShutter(1); //Decrement Aperature
}
if ( button_right ) {
changeShutter(-1); //Increment Aperature
}
//Change Mode
if ( button_hold_left ){ //T -> Av
setAperature=showAperature;
setShutter=0;
}
if ( button_hold_right ){ //T -> Auto
setAperature=0;
setShutter=0;
}
}
if (button_trigger || button_hold_trigger) { //Trigger
ev=getEV(); //set ev to current measurement by selected mode
debug_analog_high=analog_high;
debug_analog_low=analog_low;
blinkLED(20);
}
}
void handleInputs_Settings()
{
if ( button_hold_center ) { //Go to Lightmeter
settings_itemActive=false; //deselect item
displaymode=lightmeter;
}
if (!settings_itemActive){ //select items
if ( button_left ) {
if (settings_selectedItem>0){ //not first item
settings_selectedItem-=1;
}
}
if ( button_right ) {
if (settings_selectedItem<SETTINGS_SELECTEDITEM_MAX){ //not last item
settings_selectedItem+=1;
}
}
if ( button_center ){
settings_itemActive=true; //select item to change value
}
}else{ //item selected to change value
switch (settings_selectedItem)
{
case 0: //ISO
if ( button_left ) {
changeISO(-1);
}
if ( button_right ) {
changeISO(1);
}
break;
case 1: //Aperature Selection Mode
if ( button_left ) {
if(userSettings.aperatureSelectionMode>1){
userSettings.aperatureSelectionMode-=1;
}
}
if ( button_right ) {
if (userSettings.aperatureSelectionMode<MAXIMUM_APERATURESELECTIONMODES){
userSettings.aperatureSelectionMode+=1;
}
}
break;
case 2: //Shutter Selection Mode
if ( button_left ) {
if(userSettings.shutterSelectionMode>1){
userSettings.shutterSelectionMode-=1;
}
}
if ( button_right ) {
if (userSettings.shutterSelectionMode<MAXIMUM_SHUTTERSELECTIONMODES){
userSettings.shutterSelectionMode+=1;
}
}
break;
case 3: //Turn Off
poweroff();
break;
}
if ( button_center ){
settings_itemActive=false; //return to item selection
}
}
}
void handleInputs_Meteringmodeselection()
{
if ( button_center ) { //next or back to main screen
displaymode=lightmeter;
}
if ( button_left ){
meteringmode = METERINGMODE_REFLECTIVE;
displaymode=lightmeter; // and close
}
if ( button_right ) {
meteringmode = METERINGMODE_INCIDENT;
displaymode=lightmeter; // and close
}
if (millis()-millis_lastchange>TIME_METERINGMODESELECTION_CLOSE){ //Automatic close
displaymode=lightmeter;
}
}
float reciprocFloat(float p){
if (p<1){
return (1.0f/( (int)(p*1000000) ) )*1000000 ;
}else{
return (1/p);
}
}
float getEV(){
float _ev=0;
if (meteringmode == METERINGMODE_REFLECTIVE){ //### SPOT
//ev=map(analog_low,500, 3500 ,500, 1400)/100.0; //for testing
//first prototype.
//double highev=11.7400532 + 0.000216655133*analog_high + 0.00000111372253*pow(analog_high,2) + -0.000000000163800818 *pow(analog_high,3);
//double lowev=-0.763427709 + 0.0138031137*analog_low + -0.00000576990095*pow(analog_low,2) + 0.000000000871611285*pow(analog_low,3);
//calibration 20180413
//polynomial only
//double highev=4.76455098 + 0.00961533698*analog_high - 0.00000399325586*pow(analog_high,2) + 0.000000000654378697 *pow(analog_high,3);
//double lowev=-38.9534785 + 0.310426970*analog_low - 0.000769939297*pow(analog_low,2) + 0.000000639458491*pow(analog_low,3);
double log_low=log(analog_low);
//[-2.47999992e+02 5.59942657e+03 -4.74076773e+04 1.78389539e+05 -2.51728845e+05]
double lowev=-251728.845 + 178389.539*log_low - 47407.6773*pow(log_low,2) + 5599.42657*pow(log_low,3) - 247.999992*pow(log_low,4);
double log_high=log(analog_high);
//[7.27310051e-02 -2.02919373e+00 2.23823220e+01 -1.22121768e+02 3.32574527e+02 -3.60445720e+02]
double highev=-360.445720 + 332.574527*log_high - 122.121768*pow(log_high,2) + 22.3823220*pow(log_high,3) - 2.02919373*pow(log_high,4) + 0.0727310051*pow(log_high,5);
/*Serial.print("analog_low="); //asdf
Serial.print(analog_low);
Serial.print(" log_low=");
Serial.print(log_low);
Serial.print(" lowev=");
Serial.println(lowev);
Serial.print("analog_high=");
Serial.print(analog_high);
Serial.print(" log_high=");
Serial.print(log_high);
Serial.print(" highev=");
Serial.println(highev);*/
if (highev>2){
_ev=highev;
Serial.println("using high ev");
}else if(lowev<1){
_ev=lowev;
Serial.println("using low ev");
}else{ //mix of both
float mix=min(1.0, max(0.0,(lowev-1)/(2-1))); //0 to 1, 0-> use only lowev, 1-> use only highev
_ev=lowev*(1-mix)+highev*mix;
Serial.print("mixing mix=");
Serial.println(mix);
}
Serial.print("EV=");
Serial.println(_ev);
}else if (meteringmode == METERINGMODE_INCIDENT){ //### INCIDENT
_ev = luxToEv(incident*INCIDENT_CORRECTION_FACTOR);
}
return _ev;
}
void calculateFromEV()
{
if (setAperature>0){ //Aperature Priority
showAperature=setAperature; //use user set Aperature
showShutter=calculateShutter(ev,setISO, setAperature);
}else if(setShutter>0){ //Shutter Priority
showShutter=setShutter; //use user set Shutter
showAperature=calculateAperature(ev, setISO, setShutter);
}else{ //Auto
//TODO
showAperature=42;
showShutter=42;
}
}
double evToLux(double ev) {
return pow(2, ev) * 2.5;
}
double luxToEv(uint16_t lux){
if (lux <= 2){
return 0;
}
return log (lux/2.5) / log (2);
}
float calculateShutter(float pEv, uint16_t pIso, float pAperature) //returns calculated Shutter speed given Ev, ISO and Aperature
{
//EV = log2 ( 100* Aperature^2 / (ISO * Time ))
//100* Aperature^2 / (2^EV * ISO) = Time
return (100.0 * pow( pAperature,2) ) / (pow(2,pEv)*pIso);
}
float calculateAperature(float pEv, uint16_t pIso, float pShutter) //returns mathematical aperature in x1
{
//EV = log2 ( 100* Aperature^2 / (ISO * Time ))
// sqrt( 2^EV *(ISO * Time ) /100 ) = Aperature
return sqrt( pow(2,pEv) * pIso * pShutter / 100.0 ) ;
}
float roundShutter(float pShutter, uint8_t pMethod) //round shutter to typical values
{
uint8_t _index=findShutterIndex(pShutter,pMethod);
//use closest shutter value
switch(pMethod){
case 1: //
return shuttertimes1[_index];
break;
case 2: //
return shuttertimes2[_index];
break;
}
}
float roundAperature(float pAperature, uint8_t pMethod) //round Aperature (x1) to typical values. method=0 -> leave, 1=full stops, 2=half stops, 3=third stops
{
if (pMethod==0){
return pAperature;
}
uint8_t closest_index=findAperatureIndex(pAperature,pMethod);
//use closest aperature value
switch(pMethod){
case 1: //full stops
return aperaturesFull[closest_index];
break;
case 2: //half stops
//return float ( pow(sqrt(sqrt(2)), _index-2) );
return aperaturesHalf[closest_index];
break;
case 3: //third stops
return aperaturesThird[closest_index];
//return float ( pow(cbrt(sqrt(2)), _index-2) );
break;
}
}
void changeAperature(int8_t pchange){ //pchange>0 means more light exposure (brighter image)
uint8_t _newAperatureIndex=findAperatureIndex(setAperature,userSettings.aperatureSelectionMode);
uint8_t _maximumAperatureIndex=0;
switch(userSettings.aperatureSelectionMode){ //check max
case 1: //full stops
_maximumAperatureIndex=sizeof(aperaturesFull)/sizeof(float);
break;
case 2: //half stops
_maximumAperatureIndex=sizeof(aperaturesHalf)/sizeof(float);
break;
case 3: //third stops
_maximumAperatureIndex=sizeof(aperaturesThird)/sizeof(float);
break;
}
_newAperatureIndex-=pchange; //change aperature
_newAperatureIndex=min(_newAperatureIndex,_maximumAperatureIndex-1); //maximum limit
_newAperatureIndex=max(_newAperatureIndex,userSettings.minimumAperatureIndex); //minimum limit
switch(userSettings.aperatureSelectionMode){
case 1: //full stops
setAperature=aperaturesFull[_newAperatureIndex];
break;
case 2: //half stops
setAperature=aperaturesHalf[_newAperatureIndex];
break;
case 3: //third stops
setAperature=aperaturesThird[_newAperatureIndex];
break;
}
}
uint8_t findAperatureIndex(float pAperature,uint8_t pMethod) //find index of closest aperature from given aperature tables (pMethod
{
float _minDistance=90000;
float _lastminDistance=100000;
uint8_t _index=userSettings.minimumAperatureIndex;
uint8_t _maxindexpossible=0;
switch(pMethod){
case 1:
_maxindexpossible=APERATURESFULL_MAXINDEX;
break;
case 2:
_maxindexpossible=APERATURESHALF_MAXINDEX;
break;
case 3:
_maxindexpossible=APERATURESTHIRD_MAXINDEX;
break;
}
while (_lastminDistance>_minDistance) //until distance increases
{
if (_index>_maxindexpossible){ //this index will be out of bounds
return _maxindexpossible;
}
_lastminDistance=_minDistance;
switch(pMethod){
case 1: //full stops
_minDistance=abs( pAperature - aperaturesFull[_index] );
break;
case 2: //half stops
_minDistance=abs( pAperature - aperaturesHalf[_index] );
break;
case 3: //third stops
_minDistance=abs( pAperature - aperaturesThird[_index] );
break;
}
_index++; //next
}
return _index-2; //use index with closest value
}
void changeShutter(int8_t pchange){ //pchange>0 means more light exposure (brighter image)
uint8_t _newShutterIndex=findShutterIndex(setShutter,userSettings.shutterSelectionMode);
uint8_t _maximumShutterIndex=0;
switch(userSettings.shutterSelectionMode){ //get max index from array
case 1:
_maximumShutterIndex=sizeof(shuttertimes1)/sizeof(float);
break;
case 2:
_maximumShutterIndex=sizeof(shuttertimes2)/sizeof(float);
break;
}
if (!( -pchange<0 && _newShutterIndex==0)){ //changed value would not yield negative index
_newShutterIndex-=pchange; //change aperature
_newShutterIndex=min(_newShutterIndex,_maximumShutterIndex-1); //maximum limit from array
//_newShutterIndex=min(_newShutterIndex,maximumShutterIndex); //maximum limit from user settings
}
switch(userSettings.shutterSelectionMode){
case 1: //
setShutter=shuttertimes1[_newShutterIndex];
break;
case 2: //
setShutter=shuttertimes2[_newShutterIndex];
break;
}
}
uint8_t findShutterIndex(float pShutter,uint8_t pMethod) //find index of closest aperature from given aperature tables (pMethod
{
float _minDistance=abs(pShutter-shuttertimes1[0]);
float _lastminDistance=_minDistance;
uint8_t _index=0;
uint8_t _maxindexpossible=0;
switch(pMethod){
case 1:
_maxindexpossible=SHUTTERTIMES1_MAXINDEX;
break;
case 2:
_maxindexpossible=SHUTTERTIMES2_MAXINDEX;
break;
}
while (_lastminDistance>=_minDistance) //until distance increases
{
if (_index>_maxindexpossible){ //this index will be out of bounds
return _maxindexpossible;
}
_lastminDistance=_minDistance;
switch(pMethod){
case 1:
_minDistance=abs(pShutter - shuttertimes1[_index]);
break;
case 2:
_minDistance=abs(pShutter - shuttertimes2[_index]);
break;
}
_index++; //next
}
return _index-2; //use index with closest value
}
void changeISO(int8_t pchange){ //pchange>0 means more light exposure (brighter image), higher iso
uint8_t _newISOIndex=findISOIndex(setISO,userSettings.ISOSelectionMode);
uint8_t _maximumISOIndex=0;
switch(userSettings.ISOSelectionMode){ //get max index from array
case 1:
_maximumISOIndex=sizeof(isoFull)/sizeof(float);
break;
case 2:
_maximumISOIndex=sizeof(isoThird)/sizeof(float);
break;
}
if (!( pchange<0 && _newISOIndex==0)){ //changed value would not yield negative index
_newISOIndex+=pchange; //change iso
_newISOIndex=min(_newISOIndex,_maximumISOIndex-1); //maximum limit from array
//_newISOIndex=min(_newISOIndex,maximumISOIndex); //maximum limit from user settings
}
switch(userSettings.ISOSelectionMode){
case 1: //
setISO=isoFull[_newISOIndex];
break;
case 2: //
setISO=isoThird[_newISOIndex];
break;
}
}
uint8_t findISOIndex(float pISO,uint8_t pMethod) //find index of closest iso from given iso table (pMethod)
{
float _minDistance=abs(pISO-isoFull[0]);
float _lastminDistance=_minDistance;
uint8_t _index=0;
while (_lastminDistance>=_minDistance) //until distance increases
{
_lastminDistance=_minDistance;
switch(pMethod){
case 1:
_minDistance=abs(pISO - isoFull[_index]);
break;
case 2:
_minDistance=abs(pISO - isoThird[_index]);
break;
}
_index++; //next
}
return _index-2;
}
void updateDisplay()
{
if (loopmillis-last_displayupdate>=DISPLAY_UPDATEDELAY){
switch(displaymode){
case lightmeter:
updateDisplay_Lightmeter();
break;
case settings:
updateDisplay_Settings();
break;
case meteringmodeselection:
updateDisplay_Meteringmodeselection();
break;
}
last_displayupdate=loopmillis;
display.display();
}
}
void updateDisplay_Lightmeter() //Lightmeter display
{
#define xpos_aperature 2
#define ypos_aperature 29
#define xpos_shutter 50
#define ypos_shutter 29
#define xpos_icon 112 //128-16
#define ypos_icon 29
#define xpos_debug 0
#define ypos_debug 63-7
#define xpos_iso 2
#define ypos_iso 63-7-9
display.clearDisplay();
display.setTextColor(WHITE);
//Aperature
float _showAperature=roundAperature(showAperature,userSettings.aperatureSelectionMode);
display.setTextSize(1);
display.setCursor(xpos_aperature,ypos_aperature); display.print("F");
display.setTextSize(2);
display.setCursor(display.getCursorX(),display.getCursorY()); display.print(int(_showAperature));
if ( int( (_showAperature-int(_showAperature) )*10 ) !=0){ //has a decimal
display.setTextSize(1);
display.setCursor(display.getCursorX()-2,display.getCursorY()+7); display.print("."); display.setCursor(display.getCursorX()+1,display.getCursorY()-7);
display.setTextSize(2);
display.setCursor(display.getCursorX()-2,display.getCursorY());
display.print( (int)round( (_showAperature-int(_showAperature) )*10));
}
//Aperature border
if (setAperature>0){ //Aperature Priority Mode
display.drawRect(xpos_aperature-2, ypos_aperature-2, 40, 18, WHITE);
}
//Shutter
display.setCursor(xpos_shutter,ypos_shutter);
float _showShutter=roundShutter(showShutter,userSettings.shutterSelectionMode);
//Serial.print("rounded Shutter from "); Serial.print(showShutter); Serial.print(" to "); Serial.println(_showShutter); //asdf
if (_showShutter>0.25) //check shuttertime
{ //show full seconds
display.print(int(_showShutter));
if (_showShutter-int(_showShutter)>0){ //has decimals
display.setTextSize(1);
display.setCursor(display.getCursorX()-2,display.getCursorY()+7); display.print("."); display.setCursor(display.getCursorX()+1,display.getCursorY()-7);
display.setTextSize(2);
display.setCursor(display.getCursorX()-2,display.getCursorY());
display.print( (int)round( (_showShutter-int(_showShutter))*10)); //show one decimal
}
display.setTextSize(1); display.setCursor(display.getCursorX(),display.getCursorY()+7);
display.print("s");
}else{ //show fraction of a second
display.setTextSize(1); display.print("1");
display.drawLine(display.getCursorX()+1,display.getCursorY(), display.getCursorX()-1, display.getCursorY()+9, WHITE);
display.setTextSize(2); display.setCursor(display.getCursorX()+2,display.getCursorY());
int _frac_showShutter = (int) ( (1.0f/( (int)(_showShutter*1000000) ) )*1000000 );
display.print( _frac_showShutter );
display.setTextSize(1); display.setCursor(display.getCursorX(),display.getCursorY()+7);
display.print("s");
}
//Shutter border
if (setShutter>0){ //Shutter Priority Mode
display.drawRect(xpos_shutter-2, ypos_shutter-2, 60, 18, WHITE);
}
if (meteringmode == METERINGMODE_REFLECTIVE){
display.drawXBitmap(xpos_icon, ypos_icon, icon_spot_bits, icon_spot_width, icon_spot_height, WHITE);
}else if (meteringmode == METERINGMODE_INCIDENT) {
display.drawXBitmap(xpos_icon, ypos_icon, icon_incident_bits, icon_incident_width,icon_incident_height, WHITE);
}
//ISO
display.setCursor(xpos_iso,ypos_iso); display.setTextSize(1); display.print("ISO "); display.print(setISO);
//EV Scale
int8_t _startev=-5; //first ev to display, 13 ev values can fit on screen
if (ev>2){
_startev=2;
}
if (ev>13){
_startev=5+ev-13;
}
#define FULLEVLINEDISTANCE 9
#define THIRDEVLINEDISTANCE 3
#define ypos_evtext 7
#define ypos_icon_arrow 6
uint8_t xpos_arrow=(ev-_startev*1.0) *FULLEVLINEDISTANCE;
display.setTextSize(1);
display.drawLine(THIRDEVLINEDISTANCE,0,THIRDEVLINEDISTANCE,0,WHITE); //first third line
display.drawLine(THIRDEVLINEDISTANCE+THIRDEVLINEDISTANCE,0,THIRDEVLINEDISTANCE+THIRDEVLINEDISTANCE,0,WHITE); //second third line
for (uint8_t _fullevline=1;_fullevline<=13;_fullevline++){
int8_t _current_evvalue = _fullevline+_startev;
uint8_t _xpos_center_evtext = _fullevline*FULLEVLINEDISTANCE; //center of current ev line x pos
display.drawLine(_xpos_center_evtext,0,_xpos_center_evtext,2,WHITE);
display.drawLine(_xpos_center_evtext+THIRDEVLINEDISTANCE,0,_xpos_center_evtext+THIRDEVLINEDISTANCE,0,WHITE);
display.drawLine(_xpos_center_evtext+THIRDEVLINEDISTANCE+THIRDEVLINEDISTANCE,0,_xpos_center_evtext+THIRDEVLINEDISTANCE+THIRDEVLINEDISTANCE,0,WHITE);
if (_fullevline%2==1){ //only every second
uint8_t _evtextmove=2; //movement of left point of text to the left. Compensation for center position
if (_current_evvalue>9){ //text has two digits
_evtextmove=5;
}
if ( (xpos_arrow-7 > _xpos_center_evtext) || (xpos_arrow+7 < _xpos_center_evtext) ) { //drawn arrow not too close to ev text
display.setCursor(_xpos_center_evtext-_evtextmove,ypos_evtext); display.print(_current_evvalue); //EV Text
}
}
}
//Arrow at current ev
float _ev_decimals=ev-((int)ev);
display.drawXBitmap(xpos_arrow - icon_arrow_width/2.0, ypos_icon_arrow, icon_arrow_bits, icon_arrow_width, icon_arrow_height, WHITE); //arrow icon
uint8_t _xpos_current_evtext_move=5; //for text centering
if (_ev_decimals <= 0.1666 || _ev_decimals > 0.8333) { //without fraction displayed
_xpos_current_evtext_move=2;
}
int _displayev=(int)ev;
if (_ev_decimals > 0.8333 ){
_displayev=(int)(ev+1);//EV Value under arrow. Ceil
}
if (_displayev>=10){
_xpos_current_evtext_move+=6; //move digits to left. positive means left
}
display.setCursor(xpos_arrow-_xpos_current_evtext_move,ypos_icon_arrow+icon_arrow_height+2); //current ev text position
display.print(_displayev); //EV Value under arrow
if ( _ev_decimals > 0.1666 && _ev_decimals <= 0.4166) {
display.drawXBitmap(xpos_arrow , ypos_icon_arrow+icon_arrow_height-(icon_one_third_height-8)/2 +2, icon_one_third_bits, icon_one_third_width, icon_one_third_height, WHITE); //one third
}else if ( _ev_decimals > 0.4166 && _ev_decimals <= 0.5833) {
display.drawXBitmap(xpos_arrow , ypos_icon_arrow+icon_arrow_height-(icon_one_half_height-8)/2 +2, icon_one_half_bits, icon_one_half_width, icon_one_half_height, WHITE); //one half
}else if ( _ev_decimals > 0.5833 && _ev_decimals <= 0.8333) {
display.drawXBitmap(xpos_arrow , ypos_icon_arrow+icon_arrow_height-(icon_two_third_height-8)/2 +2, icon_two_third_bits, icon_two_third_width, icon_two_third_height, WHITE); //two third
}
//DEBUG Message
display.setTextSize(1);
display.setCursor(xpos_debug,ypos_debug);
display.print(vbat,2);
display.print("V ");
/*display.print("Ev=");
display.print(ev);
display.print(" |");
display.print(incident);*/
display.print(debug_analog_low);
display.print(" : ");
display.print(debug_analog_high);
}
void updateDisplay_Settings()
{
display.clearDisplay();
display.setTextColor(WHITE);
display.setTextSize(1);
#define SETTINGS_YPOS_INCREMENT 9
#define SETTINGS_XPOS_OFFSET 1
display.setCursor(SETTINGS_XPOS_OFFSET,0); //absolute position for first item
for (uint8_t _currentItemIndex=0;_currentItemIndex<=SETTINGS_SELECTEDITEM_MAX;_currentItemIndex++)
{
if (settings_selectedItem==_currentItemIndex){
if (settings_itemActive){
display.drawRect(0, display.getCursorY()-2, 126 , 11, WHITE);
}else{
display.fillCircle(2, display.getCursorY()+3,2, WHITE); //x,y,r,color
}
display.setCursor(display.getCursorX()+5,display.getCursorY()); //move text to the right
}
display.print(settingStrings[_currentItemIndex]);
switch(_currentItemIndex){ //if values need to be shown
case 0: display.print(setISO);
break;
case 1: display.print(settingsnameAperatureSelectionMode[userSettings.aperatureSelectionMode-1]);
break;
case 2: display.print(settingsnameShutterSelectionMode[userSettings.shutterSelectionMode-1]);
break;
}
display.setCursor(SETTINGS_XPOS_OFFSET,display.getCursorY()+SETTINGS_YPOS_INCREMENT); //move cursor to next entry
}
}
void updateDisplay_Meteringmodeselection()
{
display.clearDisplay();
display.setTextColor(WHITE);
#define xpos_center_icon_spot 30
#define ypos_icon_spot 20
#define xpos_center_icon_incident 97
#define ypos_icon_incident 20
display.drawXBitmap(xpos_center_icon_spot-icon_spot_width/2, ypos_icon_spot, icon_spot_bits, icon_spot_width, icon_spot_height, WHITE); //Spot icon
display.drawRect(xpos_center_icon_spot-icon_spot_width/2-2, ypos_icon_spot-2, icon_spot_width+4,icon_spot_height+4,WHITE);
display.drawXBitmap(xpos_center_icon_incident-icon_incident_width/2, ypos_icon_incident, icon_incident_bits, icon_incident_width, icon_incident_height, WHITE); //incident icon
display.drawRect(xpos_center_icon_incident-icon_incident_width/2-2, ypos_icon_incident-2, icon_incident_width+4,icon_incident_height+4,WHITE);
display.setTextSize(1);
display.setCursor(xpos_center_icon_spot-10,ypos_icon_spot+icon_spot_height +6); //text position upper left
display.print("SPOT"); //7x5 characters, xpos_center_icon_spot-(5*#chars /2)
display.setCursor(xpos_center_icon_incident-20,ypos_icon_incident+icon_incident_height+6); //text position upper left
display.print("INCIDENT");
if (loopmillis-millis_opened_meteringmodeselection>=DELAY_METERINGMODESELECTION_FLASHLIGHT){
blinkLED(500); //turn led on continously
}
}
void blinkLED(long duration){
digitalWrite(PIN_LED,HIGH);
millis_ledoff=loopmillis+duration;
}
void checkLED(){
if (loopmillis>=millis_ledoff && digitalRead(PIN_LED)){
digitalWrite(PIN_LED,LOW);
}
}
template <class T> int EEPROM_writeAnything(int ee, const T& value)
{ //from http://www.stm32duino.com/viewtopic.php?t=1576
const byte* p = (const byte*)(const void*)&value;
unsigned int i;
for (i = 0; i < sizeof(value); i++)
EEPROM.write(ee++, *p++);
return i;
}
template <class T> int EEPROM_readAnything(int ee, T& value)
{
byte* p = (byte*)(void*)&value;
unsigned int i;
for (i = 0; i < sizeof(value); i++)
*p++ = EEPROM.read(ee++);
return i;
}