hoverboard-firmware-hack-se.../Drivers/CMSIS/Include/arm_math.h

7155 lines
239 KiB
C

/* ----------------------------------------------------------------------
* Copyright (C) 2010-2015 ARM Limited. All rights reserved.
*
* $Date: 20. October 2015
* $Revision: V1.4.5 b
*
* Project: CMSIS DSP Library
* Title: arm_math.h
*
* Description: Public header file for CMSIS DSP Library
*
* Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
/**
\mainpage CMSIS DSP Software Library
*
* Introduction
* ------------
*
* This user manual describes the CMSIS DSP software library,
* a suite of common signal processing functions for use on Cortex-M processor based devices.
*
* The library is divided into a number of functions each covering a specific category:
* - Basic math functions
* - Fast math functions
* - Complex math functions
* - Filters
* - Matrix functions
* - Transforms
* - Motor control functions
* - Statistical functions
* - Support functions
* - Interpolation functions
*
* The library has separate functions for operating on 8-bit integers, 16-bit integers,
* 32-bit integer and 32-bit floating-point values.
*
* Using the Library
* ------------
*
* The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
* - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
* - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
* - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
* - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
* - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
* - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
* - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
* - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
* - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
* - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
* - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
* - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
* - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
* - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
*
* The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
* Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
* public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
* Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
* ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
*
* Examples
* --------
*
* The library ships with a number of examples which demonstrate how to use the library functions.
*
* Toolchain Support
* ------------
*
* The library has been developed and tested with MDK-ARM version 5.14.0.0
* The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
*
* Building the Library
* ------------
*
* The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
* - arm_cortexM_math.uvprojx
*
*
* The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
*
* Pre-processor Macros
* ------------
*
* Each library project have differant pre-processor macros.
*
* - UNALIGNED_SUPPORT_DISABLE:
*
* Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
*
* - ARM_MATH_BIG_ENDIAN:
*
* Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
*
* - ARM_MATH_MATRIX_CHECK:
*
* Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
*
* - ARM_MATH_ROUNDING:
*
* Define macro ARM_MATH_ROUNDING for rounding on support functions
*
* - ARM_MATH_CMx:
*
* Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
* and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
* ARM_MATH_CM7 for building the library on cortex-M7.
*
* - __FPU_PRESENT:
*
* Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
*
* <hr>
* CMSIS-DSP in ARM::CMSIS Pack
* -----------------------------
*
* The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
* |File/Folder |Content |
* |------------------------------|------------------------------------------------------------------------|
* |\b CMSIS\\Documentation\\DSP | This documentation |
* |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
* |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
* |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
*
* <hr>
* Revision History of CMSIS-DSP
* ------------
* Please refer to \ref ChangeLog_pg.
*
* Copyright Notice
* ------------
*
* Copyright (C) 2010-2015 ARM Limited. All rights reserved.
*/
/**
* @defgroup groupMath Basic Math Functions
*/
/**
* @defgroup groupFastMath Fast Math Functions
* This set of functions provides a fast approximation to sine, cosine, and square root.
* As compared to most of the other functions in the CMSIS math library, the fast math functions
* operate on individual values and not arrays.
* There are separate functions for Q15, Q31, and floating-point data.
*
*/
/**
* @defgroup groupCmplxMath Complex Math Functions
* This set of functions operates on complex data vectors.
* The data in the complex arrays is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* In the API functions, the number of samples in a complex array refers
* to the number of complex values; the array contains twice this number of
* real values.
*/
/**
* @defgroup groupFilters Filtering Functions
*/
/**
* @defgroup groupMatrix Matrix Functions
*
* This set of functions provides basic matrix math operations.
* The functions operate on matrix data structures. For example,
* the type
* definition for the floating-point matrix structure is shown
* below:
* <pre>
* typedef struct
* {
* uint16_t numRows; // number of rows of the matrix.
* uint16_t numCols; // number of columns of the matrix.
* float32_t *pData; // points to the data of the matrix.
* } arm_matrix_instance_f32;
* </pre>
* There are similar definitions for Q15 and Q31 data types.
*
* The structure specifies the size of the matrix and then points to
* an array of data. The array is of size <code>numRows X numCols</code>
* and the values are arranged in row order. That is, the
* matrix element (i, j) is stored at:
* <pre>
* pData[i*numCols + j]
* </pre>
*
* \par Init Functions
* There is an associated initialization function for each type of matrix
* data structure.
* The initialization function sets the values of the internal structure fields.
* Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
* and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
*
* \par
* Use of the initialization function is optional. However, if initialization function is used
* then the instance structure cannot be placed into a const data section.
* To place the instance structure in a const data
* section, manually initialize the data structure. For example:
* <pre>
* <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
* <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
* <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
* </pre>
* where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
* specifies the number of columns, and <code>pData</code> points to the
* data array.
*
* \par Size Checking
* By default all of the matrix functions perform size checking on the input and
* output matrices. For example, the matrix addition function verifies that the
* two input matrices and the output matrix all have the same number of rows and
* columns. If the size check fails the functions return:
* <pre>
* ARM_MATH_SIZE_MISMATCH
* </pre>
* Otherwise the functions return
* <pre>
* ARM_MATH_SUCCESS
* </pre>
* There is some overhead associated with this matrix size checking.
* The matrix size checking is enabled via the \#define
* <pre>
* ARM_MATH_MATRIX_CHECK
* </pre>
* within the library project settings. By default this macro is defined
* and size checking is enabled. By changing the project settings and
* undefining this macro size checking is eliminated and the functions
* run a bit faster. With size checking disabled the functions always
* return <code>ARM_MATH_SUCCESS</code>.
*/
/**
* @defgroup groupTransforms Transform Functions
*/
/**
* @defgroup groupController Controller Functions
*/
/**
* @defgroup groupStats Statistics Functions
*/
/**
* @defgroup groupSupport Support Functions
*/
/**
* @defgroup groupInterpolation Interpolation Functions
* These functions perform 1- and 2-dimensional interpolation of data.
* Linear interpolation is used for 1-dimensional data and
* bilinear interpolation is used for 2-dimensional data.
*/
/**
* @defgroup groupExamples Examples
*/
#ifndef _ARM_MATH_H
#define _ARM_MATH_H
/* ignore some GCC warnings */
#if defined ( __GNUC__ )
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#pragma GCC diagnostic ignored "-Wconversion"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
#define __CMSIS_GENERIC /* disable NVIC and Systick functions */
#if defined(ARM_MATH_CM7)
#include "core_cm7.h"
#elif defined (ARM_MATH_CM4)
#include "core_cm4.h"
#elif defined (ARM_MATH_CM3)
#include "core_cm3.h"
#elif defined (ARM_MATH_CM0)
#include "core_cm0.h"
#define ARM_MATH_CM0_FAMILY
#elif defined (ARM_MATH_CM0PLUS)
#include "core_cm0plus.h"
#define ARM_MATH_CM0_FAMILY
#else
#error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
#endif
#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
#include "string.h"
#include "math.h"
#ifdef __cplusplus
extern "C"
{
#endif
/**
* @brief Macros required for reciprocal calculation in Normalized LMS
*/
#define DELTA_Q31 (0x100)
#define DELTA_Q15 0x5
#define INDEX_MASK 0x0000003F
#ifndef PI
#define PI 3.14159265358979f
#endif
/**
* @brief Macros required for SINE and COSINE Fast math approximations
*/
#define FAST_MATH_TABLE_SIZE 512
#define FAST_MATH_Q31_SHIFT (32 - 10)
#define FAST_MATH_Q15_SHIFT (16 - 10)
#define CONTROLLER_Q31_SHIFT (32 - 9)
#define TABLE_SIZE 256
#define TABLE_SPACING_Q31 0x400000
#define TABLE_SPACING_Q15 0x80
/**
* @brief Macros required for SINE and COSINE Controller functions
*/
/* 1.31(q31) Fixed value of 2/360 */
/* -1 to +1 is divided into 360 values so total spacing is (2/360) */
#define INPUT_SPACING 0xB60B61
/**
* @brief Macro for Unaligned Support
*/
#ifndef UNALIGNED_SUPPORT_DISABLE
#define ALIGN4
#else
#if defined (__GNUC__)
#define ALIGN4 __attribute__((aligned(4)))
#else
#define ALIGN4 __align(4)
#endif
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/**
* @brief Error status returned by some functions in the library.
*/
typedef enum
{
ARM_MATH_SUCCESS = 0, /**< No error */
ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
} arm_status;
/**
* @brief 8-bit fractional data type in 1.7 format.
*/
typedef int8_t q7_t;
/**
* @brief 16-bit fractional data type in 1.15 format.
*/
typedef int16_t q15_t;
/**
* @brief 32-bit fractional data type in 1.31 format.
*/
typedef int32_t q31_t;
/**
* @brief 64-bit fractional data type in 1.63 format.
*/
typedef int64_t q63_t;
/**
* @brief 32-bit floating-point type definition.
*/
typedef float float32_t;
/**
* @brief 64-bit floating-point type definition.
*/
typedef double float64_t;
/**
* @brief definition to read/write two 16 bit values.
*/
#if defined __CC_ARM
#define __SIMD32_TYPE int32_t __packed
#define CMSIS_UNUSED __attribute__((unused))
#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#define __SIMD32_TYPE int32_t
#define CMSIS_UNUSED __attribute__((unused))
#elif defined __GNUC__
#define __SIMD32_TYPE int32_t
#define CMSIS_UNUSED __attribute__((unused))
#elif defined __ICCARM__
#define __SIMD32_TYPE int32_t __packed
#define CMSIS_UNUSED
#elif defined __CSMC__
#define __SIMD32_TYPE int32_t
#define CMSIS_UNUSED
#elif defined __TASKING__
#define __SIMD32_TYPE __unaligned int32_t
#define CMSIS_UNUSED
#else
#error Unknown compiler
#endif
#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
#define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
#define __SIMD64(addr) (*(int64_t **) & (addr))
#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
/**
* @brief definition to pack two 16 bit values.
*/
#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
(((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
(((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
#endif
/**
* @brief definition to pack four 8 bit values.
*/
#ifndef ARM_MATH_BIG_ENDIAN
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
(((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
(((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
(((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
#else
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
(((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
(((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
(((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
#endif
/**
* @brief Clips Q63 to Q31 values.
*/
static __INLINE q31_t clip_q63_to_q31(
q63_t x)
{
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
}
/**
* @brief Clips Q63 to Q15 values.
*/
static __INLINE q15_t clip_q63_to_q15(
q63_t x)
{
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
}
/**
* @brief Clips Q31 to Q7 values.
*/
static __INLINE q7_t clip_q31_to_q7(
q31_t x)
{
return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
}
/**
* @brief Clips Q31 to Q15 values.
*/
static __INLINE q15_t clip_q31_to_q15(
q31_t x)
{
return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
}
/**
* @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
*/
static __INLINE q63_t mult32x64(
q63_t x,
q31_t y)
{
return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
(((q63_t) (x >> 32) * y)));
}
/*
#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
#define __CLZ __clz
#endif
*/
/* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */
#if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
static __INLINE uint32_t __CLZ(
q31_t data);
static __INLINE uint32_t __CLZ(
q31_t data)
{
uint32_t count = 0;
uint32_t mask = 0x80000000;
while((data & mask) == 0)
{
count += 1u;
mask = mask >> 1u;
}
return (count);
}
#endif
/**
* @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
*/
static __INLINE uint32_t arm_recip_q31(
q31_t in,
q31_t * dst,
q31_t * pRecipTable)
{
q31_t out;
uint32_t tempVal;
uint32_t index, i;
uint32_t signBits;
if(in > 0)
{
signBits = ((uint32_t) (__CLZ( in) - 1));
}
else
{
signBits = ((uint32_t) (__CLZ(-in) - 1));
}
/* Convert input sample to 1.31 format */
in = (in << signBits);
/* calculation of index for initial approximated Val */
index = (uint32_t)(in >> 24);
index = (index & INDEX_MASK);
/* 1.31 with exp 1 */
out = pRecipTable[index];
/* calculation of reciprocal value */
/* running approximation for two iterations */
for (i = 0u; i < 2u; i++)
{
tempVal = (uint32_t) (((q63_t) in * out) >> 31);
tempVal = 0x7FFFFFFFu - tempVal;
/* 1.31 with exp 1 */
/* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
}
/* write output */
*dst = out;
/* return num of signbits of out = 1/in value */
return (signBits + 1u);
}
/**
* @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
*/
static __INLINE uint32_t arm_recip_q15(
q15_t in,
q15_t * dst,
q15_t * pRecipTable)
{
q15_t out = 0;
uint32_t tempVal = 0;
uint32_t index = 0, i = 0;
uint32_t signBits = 0;
if(in > 0)
{
signBits = ((uint32_t)(__CLZ( in) - 17));
}
else
{
signBits = ((uint32_t)(__CLZ(-in) - 17));
}
/* Convert input sample to 1.15 format */
in = (in << signBits);
/* calculation of index for initial approximated Val */
index = (uint32_t)(in >> 8);
index = (index & INDEX_MASK);
/* 1.15 with exp 1 */
out = pRecipTable[index];
/* calculation of reciprocal value */
/* running approximation for two iterations */
for (i = 0u; i < 2u; i++)
{
tempVal = (uint32_t) (((q31_t) in * out) >> 15);
tempVal = 0x7FFFu - tempVal;
/* 1.15 with exp 1 */
out = (q15_t) (((q31_t) out * tempVal) >> 14);
/* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
}
/* write output */
*dst = out;
/* return num of signbits of out = 1/in value */
return (signBits + 1);
}
/*
* @brief C custom defined intrinisic function for only M0 processors
*/
#if defined(ARM_MATH_CM0_FAMILY)
static __INLINE q31_t __SSAT(
q31_t x,
uint32_t y)
{
int32_t posMax, negMin;
uint32_t i;
posMax = 1;
for (i = 0; i < (y - 1); i++)
{
posMax = posMax * 2;
}
if(x > 0)
{
posMax = (posMax - 1);
if(x > posMax)
{
x = posMax;
}
}
else
{
negMin = -posMax;
if(x < negMin)
{
x = negMin;
}
}
return (x);
}
#endif /* end of ARM_MATH_CM0_FAMILY */
/*
* @brief C custom defined intrinsic function for M3 and M0 processors
*/
#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
/*
* @brief C custom defined QADD8 for M3 and M0 processors
*/
static __INLINE uint32_t __QADD8(
uint32_t x,
uint32_t y)
{
q31_t r, s, t, u;
r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
}
/*
* @brief C custom defined QSUB8 for M3 and M0 processors
*/
static __INLINE uint32_t __QSUB8(
uint32_t x,
uint32_t y)
{
q31_t r, s, t, u;
r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
}
/*
* @brief C custom defined QADD16 for M3 and M0 processors
*/
static __INLINE uint32_t __QADD16(
uint32_t x,
uint32_t y)
{
/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
q31_t r = 0, s = 0;
r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r )));
}
/*
* @brief C custom defined SHADD16 for M3 and M0 processors
*/
static __INLINE uint32_t __SHADD16(
uint32_t x,
uint32_t y)
{
q31_t r, s;
r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r )));
}
/*
* @brief C custom defined QSUB16 for M3 and M0 processors
*/
static __INLINE uint32_t __QSUB16(
uint32_t x,
uint32_t y)
{
q31_t r, s;
r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r )));
}
/*
* @brief C custom defined SHSUB16 for M3 and M0 processors
*/
static __INLINE uint32_t __SHSUB16(
uint32_t x,
uint32_t y)
{
q31_t r, s;
r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r )));
}
/*
* @brief C custom defined QASX for M3 and M0 processors
*/
static __INLINE uint32_t __QASX(
uint32_t x,
uint32_t y)
{
q31_t r, s;
r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r )));
}
/*
* @brief C custom defined SHASX for M3 and M0 processors
*/
static __INLINE uint32_t __SHASX(
uint32_t x,
uint32_t y)
{
q31_t r, s;
r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r )));
}
/*
* @brief C custom defined QSAX for M3 and M0 processors
*/
static __INLINE uint32_t __QSAX(
uint32_t x,
uint32_t y)
{
q31_t r, s;
r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r )));
}
/*
* @brief C custom defined SHSAX for M3 and M0 processors
*/
static __INLINE uint32_t __SHSAX(
uint32_t x,
uint32_t y)
{
q31_t r, s;
r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r )));
}
/*
* @brief C custom defined SMUSDX for M3 and M0 processors
*/
static __INLINE uint32_t __SMUSDX(
uint32_t x,
uint32_t y)
{
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
}
/*
* @brief C custom defined SMUADX for M3 and M0 processors
*/
static __INLINE uint32_t __SMUADX(
uint32_t x,
uint32_t y)
{
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
}
/*
* @brief C custom defined QADD for M3 and M0 processors
*/
static __INLINE int32_t __QADD(
int32_t x,
int32_t y)
{
return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
}
/*
* @brief C custom defined QSUB for M3 and M0 processors
*/
static __INLINE int32_t __QSUB(
int32_t x,
int32_t y)
{
return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
}
/*
* @brief C custom defined SMLAD for M3 and M0 processors
*/
static __INLINE uint32_t __SMLAD(
uint32_t x,
uint32_t y,
uint32_t sum)
{
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
( ((q31_t)sum ) ) ));
}
/*
* @brief C custom defined SMLADX for M3 and M0 processors
*/
static __INLINE uint32_t __SMLADX(
uint32_t x,
uint32_t y,
uint32_t sum)
{
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
( ((q31_t)sum ) ) ));
}
/*
* @brief C custom defined SMLSDX for M3 and M0 processors
*/
static __INLINE uint32_t __SMLSDX(
uint32_t x,
uint32_t y,
uint32_t sum)
{
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
( ((q31_t)sum ) ) ));
}
/*
* @brief C custom defined SMLALD for M3 and M0 processors
*/
static __INLINE uint64_t __SMLALD(
uint32_t x,
uint32_t y,
uint64_t sum)
{
/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
( ((q63_t)sum ) ) ));
}
/*
* @brief C custom defined SMLALDX for M3 and M0 processors
*/
static __INLINE uint64_t __SMLALDX(
uint32_t x,
uint32_t y,
uint64_t sum)
{
/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
( ((q63_t)sum ) ) ));
}
/*
* @brief C custom defined SMUAD for M3 and M0 processors
*/
static __INLINE uint32_t __SMUAD(
uint32_t x,
uint32_t y)
{
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
}
/*
* @brief C custom defined SMUSD for M3 and M0 processors
*/
static __INLINE uint32_t __SMUSD(
uint32_t x,
uint32_t y)
{
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
}
/*
* @brief C custom defined SXTB16 for M3 and M0 processors
*/
static __INLINE uint32_t __SXTB16(
uint32_t x)
{
return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
}
#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
/**
* @brief Instance structure for the Q7 FIR filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of filter coefficients in the filter. */
q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
} arm_fir_instance_q7;
/**
* @brief Instance structure for the Q15 FIR filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of filter coefficients in the filter. */
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
} arm_fir_instance_q15;
/**
* @brief Instance structure for the Q31 FIR filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of filter coefficients in the filter. */
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
} arm_fir_instance_q31;
/**
* @brief Instance structure for the floating-point FIR filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of filter coefficients in the filter. */
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
} arm_fir_instance_f32;
/**
* @brief Processing function for the Q7 FIR filter.
* @param[in] S points to an instance of the Q7 FIR filter structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_fir_q7(
const arm_fir_instance_q7 * S,
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q7 FIR filter.
* @param[in,out] S points to an instance of the Q7 FIR structure.
* @param[in] numTaps Number of filter coefficients in the filter.
* @param[in] pCoeffs points to the filter coefficients.
* @param[in] pState points to the state buffer.
* @param[in] blockSize number of samples that are processed.
*/
void arm_fir_init_q7(
arm_fir_instance_q7 * S,
uint16_t numTaps,
q7_t * pCoeffs,
q7_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the Q15 FIR filter.
* @param[in] S points to an instance of the Q15 FIR structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_fir_q15(
const arm_fir_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
* @param[in] S points to an instance of the Q15 FIR filter structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_fir_fast_q15(
const arm_fir_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q15 FIR filter.
* @param[in,out] S points to an instance of the Q15 FIR filter structure.
* @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
* @param[in] pCoeffs points to the filter coefficients.
* @param[in] pState points to the state buffer.
* @param[in] blockSize number of samples that are processed at a time.
* @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
* <code>numTaps</code> is not a supported value.
*/
arm_status arm_fir_init_q15(
arm_fir_instance_q15 * S,
uint16_t numTaps,
q15_t * pCoeffs,
q15_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 FIR filter.
* @param[in] S points to an instance of the Q31 FIR filter structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_fir_q31(
const arm_fir_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
* @param[in] S points to an instance of the Q31 FIR structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_fir_fast_q31(
const arm_fir_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q31 FIR filter.
* @param[in,out] S points to an instance of the Q31 FIR structure.
* @param[in] numTaps Number of filter coefficients in the filter.
* @param[in] pCoeffs points to the filter coefficients.
* @param[in] pState points to the state buffer.
* @param[in] blockSize number of samples that are processed at a time.
*/
void arm_fir_init_q31(
arm_fir_instance_q31 * S,
uint16_t numTaps,
q31_t * pCoeffs,
q31_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the floating-point FIR filter.
* @param[in] S points to an instance of the floating-point FIR structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_fir_f32(
const arm_fir_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the floating-point FIR filter.
* @param[in,out] S points to an instance of the floating-point FIR filter structure.
* @param[in] numTaps Number of filter coefficients in the filter.
* @param[in] pCoeffs points to the filter coefficients.
* @param[in] pState points to the state buffer.
* @param[in] blockSize number of samples that are processed at a time.
*/
void arm_fir_init_f32(
arm_fir_instance_f32 * S,
uint16_t numTaps,
float32_t * pCoeffs,
float32_t * pState,
uint32_t blockSize);
/**
* @brief Instance structure for the Q15 Biquad cascade filter.
*/
typedef struct
{
int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
} arm_biquad_casd_df1_inst_q15;
/**
* @brief Instance structure for the Q31 Biquad cascade filter.
*/
typedef struct
{
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
} arm_biquad_casd_df1_inst_q31;
/**
* @brief Instance structure for the floating-point Biquad cascade filter.
*/
typedef struct
{
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
} arm_biquad_casd_df1_inst_f32;
/**
* @brief Processing function for the Q15 Biquad cascade filter.
* @param[in] S points to an instance of the Q15 Biquad cascade structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_biquad_cascade_df1_q15(
const arm_biquad_casd_df1_inst_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q15 Biquad cascade filter.
* @param[in,out] S points to an instance of the Q15 Biquad cascade structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] pCoeffs points to the filter coefficients.
* @param[in] pState points to the state buffer.
* @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
*/
void arm_biquad_cascade_df1_init_q15(
arm_biquad_casd_df1_inst_q15 * S,
uint8_t numStages,
q15_t * pCoeffs,
q15_t * pState,
int8_t postShift);
/**
* @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
* @param[in] S points to an instance of the Q15 Biquad cascade structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_biquad_cascade_df1_fast_q15(
const arm_biquad_casd_df1_inst_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 Biquad cascade filter
* @param[in] S points to an instance of the Q31 Biquad cascade structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_biquad_cascade_df1_q31(
const arm_biquad_casd_df1_inst_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
* @param[in] S points to an instance of the Q31 Biquad cascade structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_biquad_cascade_df1_fast_q31(
const arm_biquad_casd_df1_inst_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q31 Biquad cascade filter.
* @param[in,out] S points to an instance of the Q31 Biquad cascade structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] pCoeffs points to the filter coefficients.
* @param[in] pState points to the state buffer.
* @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
*/
void arm_biquad_cascade_df1_init_q31(
arm_biquad_casd_df1_inst_q31 * S,
uint8_t numStages,
q31_t * pCoeffs,
q31_t * pState,
int8_t postShift);
/**
* @brief Processing function for the floating-point Biquad cascade filter.
* @param[in] S points to an instance of the floating-point Biquad cascade structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_biquad_cascade_df1_f32(
const arm_biquad_casd_df1_inst_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the floating-point Biquad cascade filter.
* @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] pCoeffs points to the filter coefficients.
* @param[in] pState points to the state buffer.
*/
void arm_biquad_cascade_df1_init_f32(
arm_biquad_casd_df1_inst_f32 * S,
uint8_t numStages,
float32_t * pCoeffs,
float32_t * pState);
/**
* @brief Instance structure for the floating-point matrix structure.
*/
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
uint16_t numCols; /**< number of columns of the matrix. */
float32_t *pData; /**< points to the data of the matrix. */
} arm_matrix_instance_f32;
/**
* @brief Instance structure for the floating-point matrix structure.
*/
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
uint16_t numCols; /**< number of columns of the matrix. */
float64_t *pData; /**< points to the data of the matrix. */
} arm_matrix_instance_f64;
/**
* @brief Instance structure for the Q15 matrix structure.
*/
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
uint16_t numCols; /**< number of columns of the matrix. */
q15_t *pData; /**< points to the data of the matrix. */
} arm_matrix_instance_q15;
/**
* @brief Instance structure for the Q31 matrix structure.
*/
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
uint16_t numCols; /**< number of columns of the matrix. */
q31_t *pData; /**< points to the data of the matrix. */
} arm_matrix_instance_q31;
/**
* @brief Floating-point matrix addition.
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_add_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst);
/**
* @brief Q15 matrix addition.
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_add_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst);
/**
* @brief Q31 matrix addition.
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_add_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst);
/**
* @brief Floating-point, complex, matrix multiplication.
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_cmplx_mult_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst);
/**
* @brief Q15, complex, matrix multiplication.
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_cmplx_mult_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst,
q15_t * pScratch);
/**
* @brief Q31, complex, matrix multiplication.
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_cmplx_mult_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst);
/**
* @brief Floating-point matrix transpose.
* @param[in] pSrc points to the input matrix
* @param[out] pDst points to the output matrix
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_trans_f32(
const arm_matrix_instance_f32 * pSrc,
arm_matrix_instance_f32 * pDst);
/**
* @brief Q15 matrix transpose.
* @param[in] pSrc points to the input matrix
* @param[out] pDst points to the output matrix
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_trans_q15(
const arm_matrix_instance_q15 * pSrc,
arm_matrix_instance_q15 * pDst);
/**
* @brief Q31 matrix transpose.
* @param[in] pSrc points to the input matrix
* @param[out] pDst points to the output matrix
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_trans_q31(
const arm_matrix_instance_q31 * pSrc,
arm_matrix_instance_q31 * pDst);
/**
* @brief Floating-point matrix multiplication
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst);
/**
* @brief Q15 matrix multiplication
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @param[in] pState points to the array for storing intermediate results
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst,
q15_t * pState);
/**
* @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @param[in] pState points to the array for storing intermediate results
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_fast_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst,
q15_t * pState);
/**
* @brief Q31 matrix multiplication
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst);
/**
* @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_fast_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst);
/**
* @brief Floating-point matrix subtraction
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_sub_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst);
/**
* @brief Q15 matrix subtraction
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_sub_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst);
/**
* @brief Q31 matrix subtraction
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_sub_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst);
/**
* @brief Floating-point matrix scaling.
* @param[in] pSrc points to the input matrix
* @param[in] scale scale factor
* @param[out] pDst points to the output matrix
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_scale_f32(
const arm_matrix_instance_f32 * pSrc,
float32_t scale,
arm_matrix_instance_f32 * pDst);
/**
* @brief Q15 matrix scaling.
* @param[in] pSrc points to input matrix
* @param[in] scaleFract fractional portion of the scale factor
* @param[in] shift number of bits to shift the result by
* @param[out] pDst points to output matrix
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_scale_q15(
const arm_matrix_instance_q15 * pSrc,
q15_t scaleFract,
int32_t shift,
arm_matrix_instance_q15 * pDst);
/**
* @brief Q31 matrix scaling.
* @param[in] pSrc points to input matrix
* @param[in] scaleFract fractional portion of the scale factor
* @param[in] shift number of bits to shift the result by
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_scale_q31(
const arm_matrix_instance_q31 * pSrc,
q31_t scaleFract,
int32_t shift,
arm_matrix_instance_q31 * pDst);
/**
* @brief Q31 matrix initialization.
* @param[in,out] S points to an instance of the floating-point matrix structure.
* @param[in] nRows number of rows in the matrix.
* @param[in] nColumns number of columns in the matrix.
* @param[in] pData points to the matrix data array.
*/
void arm_mat_init_q31(
arm_matrix_instance_q31 * S,
uint16_t nRows,
uint16_t nColumns,
q31_t * pData);
/**
* @brief Q15 matrix initialization.
* @param[in,out] S points to an instance of the floating-point matrix structure.
* @param[in] nRows number of rows in the matrix.
* @param[in] nColumns number of columns in the matrix.
* @param[in] pData points to the matrix data array.
*/
void arm_mat_init_q15(
arm_matrix_instance_q15 * S,
uint16_t nRows,
uint16_t nColumns,
q15_t * pData);
/**
* @brief Floating-point matrix initialization.
* @param[in,out] S points to an instance of the floating-point matrix structure.
* @param[in] nRows number of rows in the matrix.
* @param[in] nColumns number of columns in the matrix.
* @param[in] pData points to the matrix data array.
*/
void arm_mat_init_f32(
arm_matrix_instance_f32 * S,
uint16_t nRows,
uint16_t nColumns,
float32_t * pData);
/**
* @brief Instance structure for the Q15 PID Control.
*/
typedef struct
{
q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
#ifdef ARM_MATH_CM0_FAMILY
q15_t A1;
q15_t A2;
#else
q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
#endif
q15_t state[3]; /**< The state array of length 3. */
q15_t Kp; /**< The proportional gain. */
q15_t Ki; /**< The integral gain. */
q15_t Kd; /**< The derivative gain. */
} arm_pid_instance_q15;
/**
* @brief Instance structure for the Q31 PID Control.
*/
typedef struct
{
q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
q31_t A2; /**< The derived gain, A2 = Kd . */
q31_t state[3]; /**< The state array of length 3. */
q31_t Kp; /**< The proportional gain. */
q31_t Ki; /**< The integral gain. */
q31_t Kd; /**< The derivative gain. */
} arm_pid_instance_q31;
/**
* @brief Instance structure for the floating-point PID Control.
*/
typedef struct
{
float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
float32_t A2; /**< The derived gain, A2 = Kd . */
float32_t state[3]; /**< The state array of length 3. */
float32_t Kp; /**< The proportional gain. */
float32_t Ki; /**< The integral gain. */
float32_t Kd; /**< The derivative gain. */
} arm_pid_instance_f32;
/**
* @brief Initialization function for the floating-point PID Control.
* @param[in,out] S points to an instance of the PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
*/
void arm_pid_init_f32(
arm_pid_instance_f32 * S,
int32_t resetStateFlag);
/**
* @brief Reset function for the floating-point PID Control.
* @param[in,out] S is an instance of the floating-point PID Control structure
*/
void arm_pid_reset_f32(
arm_pid_instance_f32 * S);
/**
* @brief Initialization function for the Q31 PID Control.
* @param[in,out] S points to an instance of the Q15 PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
*/
void arm_pid_init_q31(
arm_pid_instance_q31 * S,
int32_t resetStateFlag);
/**
* @brief Reset function for the Q31 PID Control.
* @param[in,out] S points to an instance of the Q31 PID Control structure
*/
void arm_pid_reset_q31(
arm_pid_instance_q31 * S);
/**
* @brief Initialization function for the Q15 PID Control.
* @param[in,out] S points to an instance of the Q15 PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
*/
void arm_pid_init_q15(
arm_pid_instance_q15 * S,
int32_t resetStateFlag);
/**
* @brief Reset function for the Q15 PID Control.
* @param[in,out] S points to an instance of the q15 PID Control structure
*/
void arm_pid_reset_q15(
arm_pid_instance_q15 * S);
/**
* @brief Instance structure for the floating-point Linear Interpolate function.
*/
typedef struct
{
uint32_t nValues; /**< nValues */
float32_t x1; /**< x1 */
float32_t xSpacing; /**< xSpacing */
float32_t *pYData; /**< pointer to the table of Y values */
} arm_linear_interp_instance_f32;
/**
* @brief Instance structure for the floating-point bilinear interpolation function.
*/
typedef struct
{
uint16_t numRows; /**< number of rows in the data table. */
uint16_t numCols; /**< number of columns in the data table. */
float32_t *pData; /**< points to the data table. */
} arm_bilinear_interp_instance_f32;
/**
* @brief Instance structure for the Q31 bilinear interpolation function.
*/
typedef struct
{
uint16_t numRows; /**< number of rows in the data table. */
uint16_t numCols; /**< number of columns in the data table. */
q31_t *pData; /**< points to the data table. */
} arm_bilinear_interp_instance_q31;
/**
* @brief Instance structure for the Q15 bilinear interpolation function.
*/
typedef struct
{
uint16_t numRows; /**< number of rows in the data table. */
uint16_t numCols; /**< number of columns in the data table. */
q15_t *pData; /**< points to the data table. */
} arm_bilinear_interp_instance_q15;
/**
* @brief Instance structure for the Q15 bilinear interpolation function.
*/
typedef struct
{
uint16_t numRows; /**< number of rows in the data table. */
uint16_t numCols; /**< number of columns in the data table. */
q7_t *pData; /**< points to the data table. */
} arm_bilinear_interp_instance_q7;
/**
* @brief Q7 vector multiplication.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in each vector
*/
void arm_mult_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Q15 vector multiplication.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in each vector
*/
void arm_mult_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Q31 vector multiplication.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in each vector
*/
void arm_mult_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Floating-point vector multiplication.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in each vector
*/
void arm_mult_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Instance structure for the Q15 CFFT/CIFFT function.
*/
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
} arm_cfft_radix2_instance_q15;
/* Deprecated */
arm_status arm_cfft_radix2_init_q15(
arm_cfft_radix2_instance_q15 * S,
uint16_t fftLen,
uint8_t ifftFlag,
uint8_t bitReverseFlag);
/* Deprecated */
void arm_cfft_radix2_q15(
const arm_cfft_radix2_instance_q15 * S,
q15_t * pSrc);
/**
* @brief Instance structure for the Q15 CFFT/CIFFT function.
*/
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
q15_t *pTwiddle; /**< points to the twiddle factor table. */
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
} arm_cfft_radix4_instance_q15;
/* Deprecated */
arm_status arm_cfft_radix4_init_q15(
arm_cfft_radix4_instance_q15 * S,
uint16_t fftLen,
uint8_t ifftFlag,
uint8_t bitReverseFlag);
/* Deprecated */
void arm_cfft_radix4_q15(
const arm_cfft_radix4_instance_q15 * S,
q15_t * pSrc);
/**
* @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
*/
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
q31_t *pTwiddle; /**< points to the Twiddle factor table. */
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
} arm_cfft_radix2_instance_q31;
/* Deprecated */
arm_status arm_cfft_radix2_init_q31(
arm_cfft_radix2_instance_q31 * S,
uint16_t fftLen,
uint8_t ifftFlag,
uint8_t bitReverseFlag);
/* Deprecated */
void arm_cfft_radix2_q31(
const arm_cfft_radix2_instance_q31 * S,
q31_t * pSrc);
/**
* @brief Instance structure for the Q31 CFFT/CIFFT function.
*/
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
q31_t *pTwiddle; /**< points to the twiddle factor table. */
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
} arm_cfft_radix4_instance_q31;
/* Deprecated */
void arm_cfft_radix4_q31(
const arm_cfft_radix4_instance_q31 * S,
q31_t * pSrc);
/* Deprecated */
arm_status arm_cfft_radix4_init_q31(
arm_cfft_radix4_instance_q31 * S,
uint16_t fftLen,
uint8_t ifftFlag,
uint8_t bitReverseFlag);
/**
* @brief Instance structure for the floating-point CFFT/CIFFT function.
*/
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
float32_t *pTwiddle; /**< points to the Twiddle factor table. */
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
float32_t onebyfftLen; /**< value of 1/fftLen. */
} arm_cfft_radix2_instance_f32;
/* Deprecated */
arm_status arm_cfft_radix2_init_f32(
arm_cfft_radix2_instance_f32 * S,
uint16_t fftLen,
uint8_t ifftFlag,
uint8_t bitReverseFlag);
/* Deprecated */
void arm_cfft_radix2_f32(
const arm_cfft_radix2_instance_f32 * S,
float32_t * pSrc);
/**
* @brief Instance structure for the floating-point CFFT/CIFFT function.
*/
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
float32_t *pTwiddle; /**< points to the Twiddle factor table. */
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
float32_t onebyfftLen; /**< value of 1/fftLen. */
} arm_cfft_radix4_instance_f32;
/* Deprecated */
arm_status arm_cfft_radix4_init_f32(
arm_cfft_radix4_instance_f32 * S,
uint16_t fftLen,
uint8_t ifftFlag,
uint8_t bitReverseFlag);
/* Deprecated */
void arm_cfft_radix4_f32(
const arm_cfft_radix4_instance_f32 * S,
float32_t * pSrc);
/**
* @brief Instance structure for the fixed-point CFFT/CIFFT function.
*/
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t bitRevLength; /**< bit reversal table length. */
} arm_cfft_instance_q15;
void arm_cfft_q15(
const arm_cfft_instance_q15 * S,
q15_t * p1,
uint8_t ifftFlag,
uint8_t bitReverseFlag);
/**
* @brief Instance structure for the fixed-point CFFT/CIFFT function.
*/
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t bitRevLength; /**< bit reversal table length. */
} arm_cfft_instance_q31;
void arm_cfft_q31(
const arm_cfft_instance_q31 * S,
q31_t * p1,
uint8_t ifftFlag,
uint8_t bitReverseFlag);
/**
* @brief Instance structure for the floating-point CFFT/CIFFT function.
*/
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t bitRevLength; /**< bit reversal table length. */
} arm_cfft_instance_f32;
void arm_cfft_f32(
const arm_cfft_instance_f32 * S,
float32_t * p1,
uint8_t ifftFlag,
uint8_t bitReverseFlag);
/**
* @brief Instance structure for the Q15 RFFT/RIFFT function.
*/
typedef struct
{
uint32_t fftLenReal; /**< length of the real FFT. */
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
} arm_rfft_instance_q15;
arm_status arm_rfft_init_q15(
arm_rfft_instance_q15 * S,
uint32_t fftLenReal,
uint32_t ifftFlagR,
uint32_t bitReverseFlag);
void arm_rfft_q15(
const arm_rfft_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst);
/**
* @brief Instance structure for the Q31 RFFT/RIFFT function.
*/
typedef struct
{
uint32_t fftLenReal; /**< length of the real FFT. */
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
} arm_rfft_instance_q31;
arm_status arm_rfft_init_q31(
arm_rfft_instance_q31 * S,
uint32_t fftLenReal,
uint32_t ifftFlagR,
uint32_t bitReverseFlag);
void arm_rfft_q31(
const arm_rfft_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst);
/**
* @brief Instance structure for the floating-point RFFT/RIFFT function.
*/
typedef struct
{
uint32_t fftLenReal; /**< length of the real FFT. */
uint16_t fftLenBy2; /**< length of the complex FFT. */
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
} arm_rfft_instance_f32;
arm_status arm_rfft_init_f32(
arm_rfft_instance_f32 * S,
arm_cfft_radix4_instance_f32 * S_CFFT,
uint32_t fftLenReal,
uint32_t ifftFlagR,
uint32_t bitReverseFlag);
void arm_rfft_f32(
const arm_rfft_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst);
/**
* @brief Instance structure for the floating-point RFFT/RIFFT function.
*/
typedef struct
{
arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
uint16_t fftLenRFFT; /**< length of the real sequence */
float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
} arm_rfft_fast_instance_f32 ;
arm_status arm_rfft_fast_init_f32 (
arm_rfft_fast_instance_f32 * S,
uint16_t fftLen);
void arm_rfft_fast_f32(
arm_rfft_fast_instance_f32 * S,
float32_t * p, float32_t * pOut,
uint8_t ifftFlag);
/**
* @brief Instance structure for the floating-point DCT4/IDCT4 function.
*/
typedef struct
{
uint16_t N; /**< length of the DCT4. */
uint16_t Nby2; /**< half of the length of the DCT4. */
float32_t normalize; /**< normalizing factor. */
float32_t *pTwiddle; /**< points to the twiddle factor table. */
float32_t *pCosFactor; /**< points to the cosFactor table. */
arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
} arm_dct4_instance_f32;
/**
* @brief Initialization function for the floating-point DCT4/IDCT4.
* @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
* @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
* @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
* @param[in] N length of the DCT4.
* @param[in] Nby2 half of the length of the DCT4.
* @param[in] normalize normalizing factor.
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
*/
arm_status arm_dct4_init_f32(
arm_dct4_instance_f32 * S,
arm_rfft_instance_f32 * S_RFFT,
arm_cfft_radix4_instance_f32 * S_CFFT,
uint16_t N,
uint16_t Nby2,
float32_t normalize);
/**
* @brief Processing function for the floating-point DCT4/IDCT4.
* @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
* @param[in] pState points to state buffer.
* @param[in,out] pInlineBuffer points to the in-place input and output buffer.
*/
void arm_dct4_f32(
const arm_dct4_instance_f32 * S,
float32_t * pState,
float32_t * pInlineBuffer);
/**
* @brief Instance structure for the Q31 DCT4/IDCT4 function.
*/
typedef struct
{
uint16_t N; /**< length of the DCT4. */
uint16_t Nby2; /**< half of the length of the DCT4. */
q31_t normalize; /**< normalizing factor. */
q31_t *pTwiddle; /**< points to the twiddle factor table. */
q31_t *pCosFactor; /**< points to the cosFactor table. */
arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
} arm_dct4_instance_q31;
/**
* @brief Initialization function for the Q31 DCT4/IDCT4.
* @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
* @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
* @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
* @param[in] N length of the DCT4.
* @param[in] Nby2 half of the length of the DCT4.
* @param[in] normalize normalizing factor.
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
*/
arm_status arm_dct4_init_q31(
arm_dct4_instance_q31 * S,
arm_rfft_instance_q31 * S_RFFT,
arm_cfft_radix4_instance_q31 * S_CFFT,
uint16_t N,
uint16_t Nby2,
q31_t normalize);
/**
* @brief Processing function for the Q31 DCT4/IDCT4.
* @param[in] S points to an instance of the Q31 DCT4 structure.
* @param[in] pState points to state buffer.
* @param[in,out] pInlineBuffer points to the in-place input and output buffer.
*/
void arm_dct4_q31(
const arm_dct4_instance_q31 * S,
q31_t * pState,
q31_t * pInlineBuffer);
/**
* @brief Instance structure for the Q15 DCT4/IDCT4 function.
*/
typedef struct
{
uint16_t N; /**< length of the DCT4. */
uint16_t Nby2; /**< half of the length of the DCT4. */
q15_t normalize; /**< normalizing factor. */
q15_t *pTwiddle; /**< points to the twiddle factor table. */
q15_t *pCosFactor; /**< points to the cosFactor table. */
arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
} arm_dct4_instance_q15;
/**
* @brief Initialization function for the Q15 DCT4/IDCT4.
* @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
* @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
* @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
* @param[in] N length of the DCT4.
* @param[in] Nby2 half of the length of the DCT4.
* @param[in] normalize normalizing factor.
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
*/
arm_status arm_dct4_init_q15(
arm_dct4_instance_q15 * S,
arm_rfft_instance_q15 * S_RFFT,
arm_cfft_radix4_instance_q15 * S_CFFT,
uint16_t N,
uint16_t Nby2,
q15_t normalize);
/**
* @brief Processing function for the Q15 DCT4/IDCT4.
* @param[in] S points to an instance of the Q15 DCT4 structure.
* @param[in] pState points to state buffer.
* @param[in,out] pInlineBuffer points to the in-place input and output buffer.
*/
void arm_dct4_q15(
const arm_dct4_instance_q15 * S,
q15_t * pState,
q15_t * pInlineBuffer);
/**
* @brief Floating-point vector addition.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in each vector
*/
void arm_add_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Q7 vector addition.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in each vector
*/
void arm_add_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Q15 vector addition.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in each vector
*/
void arm_add_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Q31 vector addition.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in each vector
*/
void arm_add_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Floating-point vector subtraction.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in each vector
*/
void arm_sub_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Q7 vector subtraction.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in each vector
*/
void arm_sub_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Q15 vector subtraction.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in each vector
*/
void arm_sub_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Q31 vector subtraction.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in each vector
*/
void arm_sub_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Multiplies a floating-point vector by a scalar.
* @param[in] pSrc points to the input vector
* @param[in] scale scale factor to be applied
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_scale_f32(
float32_t * pSrc,
float32_t scale,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Multiplies a Q7 vector by a scalar.
* @param[in] pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_scale_q7(
q7_t * pSrc,
q7_t scaleFract,
int8_t shift,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Multiplies a Q15 vector by a scalar.
* @param[in] pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_scale_q15(
q15_t * pSrc,
q15_t scaleFract,
int8_t shift,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Multiplies a Q31 vector by a scalar.
* @param[in] pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_scale_q31(
q31_t * pSrc,
q31_t scaleFract,
int8_t shift,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Q7 vector absolute value.
* @param[in] pSrc points to the input buffer
* @param[out] pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
*/
void arm_abs_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Floating-point vector absolute value.
* @param[in] pSrc points to the input buffer
* @param[out] pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
*/
void arm_abs_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Q15 vector absolute value.
* @param[in] pSrc points to the input buffer
* @param[out] pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
*/
void arm_abs_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Q31 vector absolute value.
* @param[in] pSrc points to the input buffer
* @param[out] pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
*/
void arm_abs_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Dot product of floating-point vectors.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] result output result returned here
*/
void arm_dot_prod_f32(
float32_t * pSrcA,
float32_t * pSrcB,
uint32_t blockSize,
float32_t * result);
/**
* @brief Dot product of Q7 vectors.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] result output result returned here
*/
void arm_dot_prod_q7(
q7_t * pSrcA,
q7_t * pSrcB,
uint32_t blockSize,
q31_t * result);
/**
* @brief Dot product of Q15 vectors.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] result output result returned here
*/
void arm_dot_prod_q15(
q15_t * pSrcA,
q15_t * pSrcB,
uint32_t blockSize,
q63_t * result);
/**
* @brief Dot product of Q31 vectors.
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] result output result returned here
*/
void arm_dot_prod_q31(
q31_t * pSrcA,
q31_t * pSrcB,
uint32_t blockSize,
q63_t * result);
/**
* @brief Shifts the elements of a Q7 vector a specified number of bits.
* @param[in] pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_shift_q7(
q7_t * pSrc,
int8_t shiftBits,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Shifts the elements of a Q15 vector a specified number of bits.
* @param[in] pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_shift_q15(
q15_t * pSrc,
int8_t shiftBits,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Shifts the elements of a Q31 vector a specified number of bits.
* @param[in] pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_shift_q31(
q31_t * pSrc,
int8_t shiftBits,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Adds a constant offset to a floating-point vector.
* @param[in] pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_offset_f32(
float32_t * pSrc,
float32_t offset,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Adds a constant offset to a Q7 vector.
* @param[in] pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_offset_q7(
q7_t * pSrc,
q7_t offset,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Adds a constant offset to a Q15 vector.
* @param[in] pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_offset_q15(
q15_t * pSrc,
q15_t offset,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Adds a constant offset to a Q31 vector.
* @param[in] pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_offset_q31(
q31_t * pSrc,
q31_t offset,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Negates the elements of a floating-point vector.
* @param[in] pSrc points to the input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_negate_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Negates the elements of a Q7 vector.
* @param[in] pSrc points to the input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_negate_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Negates the elements of a Q15 vector.
* @param[in] pSrc points to the input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_negate_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Negates the elements of a Q31 vector.
* @param[in] pSrc points to the input vector
* @param[out] pDst points to the output vector
* @param[in] blockSize number of samples in the vector
*/
void arm_negate_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Copies the elements of a floating-point vector.
* @param[in] pSrc input pointer
* @param[out] pDst output pointer
* @param[in] blockSize number of samples to process
*/
void arm_copy_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Copies the elements of a Q7 vector.
* @param[in] pSrc input pointer
* @param[out] pDst output pointer
* @param[in] blockSize number of samples to process
*/
void arm_copy_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Copies the elements of a Q15 vector.
* @param[in] pSrc input pointer
* @param[out] pDst output pointer
* @param[in] blockSize number of samples to process
*/
void arm_copy_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Copies the elements of a Q31 vector.
* @param[in] pSrc input pointer
* @param[out] pDst output pointer
* @param[in] blockSize number of samples to process
*/
void arm_copy_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Fills a constant value into a floating-point vector.
* @param[in] value input value to be filled
* @param[out] pDst output pointer
* @param[in] blockSize number of samples to process
*/
void arm_fill_f32(
float32_t value,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Fills a constant value into a Q7 vector.
* @param[in] value input value to be filled
* @param[out] pDst output pointer
* @param[in] blockSize number of samples to process
*/
void arm_fill_q7(
q7_t value,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Fills a constant value into a Q15 vector.
* @param[in] value input value to be filled
* @param[out] pDst output pointer
* @param[in] blockSize number of samples to process
*/
void arm_fill_q15(
q15_t value,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Fills a constant value into a Q31 vector.
* @param[in] value input value to be filled
* @param[out] pDst output pointer
* @param[in] blockSize number of samples to process
*/
void arm_fill_q31(
q31_t value,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Convolution of floating-point sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
*/
void arm_conv_f32(
float32_t * pSrcA,
uint32_t srcALen,
float32_t * pSrcB,
uint32_t srcBLen,
float32_t * pDst);
/**
* @brief Convolution of Q15 sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
*/
void arm_conv_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
q15_t * pScratch1,
q15_t * pScratch2);
/**
* @brief Convolution of Q15 sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
*/
void arm_conv_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst);
/**
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
*/
void arm_conv_fast_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst);
/**
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
*/
void arm_conv_fast_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
q15_t * pScratch1,
q15_t * pScratch2);
/**
* @brief Convolution of Q31 sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
*/
void arm_conv_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst);
/**
* @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
*/
void arm_conv_fast_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst);
/**
* @brief Convolution of Q7 sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
* @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
* @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
*/
void arm_conv_opt_q7(
q7_t * pSrcA,
uint32_t srcALen,
q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst,
q15_t * pScratch1,
q15_t * pScratch2);
/**
* @brief Convolution of Q7 sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
*/
void arm_conv_q7(
q7_t * pSrcA,
uint32_t srcALen,
q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst);
/**
* @brief Partial convolution of floating-point sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_f32(
float32_t * pSrcA,
uint32_t srcALen,
float32_t * pSrcB,
uint32_t srcBLen,
float32_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Partial convolution of Q15 sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
uint32_t firstIndex,
uint32_t numPoints,
q15_t * pScratch1,
q15_t * pScratch2);
/**
* @brief Partial convolution of Q15 sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_fast_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_fast_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
uint32_t firstIndex,
uint32_t numPoints,
q15_t * pScratch1,
q15_t * pScratch2);
/**
* @brief Partial convolution of Q31 sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_fast_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Partial convolution of Q7 sequences
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
* @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_opt_q7(
q7_t * pSrcA,
uint32_t srcALen,
q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst,
uint32_t firstIndex,
uint32_t numPoints,
q15_t * pScratch1,
q15_t * pScratch2);
/**
* @brief Partial convolution of Q7 sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_q7(
q7_t * pSrcA,
uint32_t srcALen,
q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Instance structure for the Q15 FIR decimator.
*/
typedef struct
{
uint8_t M; /**< decimation factor. */
uint16_t numTaps; /**< number of coefficients in the filter. */
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_q15;
/**
* @brief Instance structure for the Q31 FIR decimator.
*/
typedef struct
{
uint8_t M; /**< decimation factor. */
uint16_t numTaps; /**< number of coefficients in the filter. */
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_q31;
/**
* @brief Instance structure for the floating-point FIR decimator.
*/
typedef struct
{
uint8_t M; /**< decimation factor. */
uint16_t numTaps; /**< number of coefficients in the filter. */
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_f32;
/**
* @brief Processing function for the floating-point FIR decimator.
* @param[in] S points to an instance of the floating-point FIR decimator structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
*/
void arm_fir_decimate_f32(
const arm_fir_decimate_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the floating-point FIR decimator.
* @param[in,out] S points to an instance of the floating-point FIR decimator structure.
* @param[in] numTaps number of coefficients in the filter.
* @param[in] M decimation factor.
* @param[in] pCoeffs points to the filter coefficients.
* @param[in] pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* <code>blockSize</code> is not a multiple of <code>M</code>.
*/
arm_status arm_fir_decimate_init_f32(
arm_fir_decimate_instance_f32 * S,
uint16_t numTaps,
uint8_t M,
float32_t * pCoeffs,
float32_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the Q15 FIR decimator.
* @param[in] S points to an instance of the Q15 FIR decimator structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
*/
void arm_fir_decimate_q15(
const arm_fir_decimate_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
* @param[in] S points to an instance of the Q15 FIR decimator structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
*/
void arm_fir_decimate_fast_q15(
const arm_fir_decimate_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q15 FIR decimator.
* @param[in,out] S points to an instance of the Q15 FIR decimator structure.
* @param[in] numTaps number of coefficients in the filter.
* @param[in] M decimation factor.
* @param[in] pCoeffs points to the filter coefficients.
* @param[in] pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* <code>blockSize</code> is not a multiple of <code>M</code>.
*/
arm_status arm_fir_decimate_init_q15(
arm_fir_decimate_instance_q15 * S,
uint16_t numTaps,
uint8_t M,
q15_t * pCoeffs,
q15_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 FIR decimator.
* @param[in] S points to an instance of the Q31 FIR decimator structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
*/
void arm_fir_decimate_q31(
const arm_fir_decimate_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
* @param[in] S points to an instance of the Q31 FIR decimator structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
*/
void arm_fir_decimate_fast_q31(
arm_fir_decimate_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q31 FIR decimator.
* @param[in,out] S points to an instance of the Q31 FIR decimator structure.
* @param[in] numTaps number of coefficients in the filter.
* @param[in] M decimation factor.
* @param[in] pCoeffs points to the filter coefficients.
* @param[in] pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* <code>blockSize</code> is not a multiple of <code>M</code>.
*/
arm_status arm_fir_decimate_init_q31(
arm_fir_decimate_instance_q31 * S,
uint16_t numTaps,
uint8_t M,
q31_t * pCoeffs,
q31_t * pState,
uint32_t blockSize);
/**
* @brief Instance structure for the Q15 FIR interpolator.
*/
typedef struct
{
uint8_t L; /**< upsample factor. */
uint16_t phaseLength; /**< length of each polyphase filter component. */
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
} arm_fir_interpolate_instance_q15;
/**
* @brief Instance structure for the Q31 FIR interpolator.
*/
typedef struct
{
uint8_t L; /**< upsample factor. */
uint16_t phaseLength; /**< length of each polyphase filter component. */
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
} arm_fir_interpolate_instance_q31;
/**
* @brief Instance structure for the floating-point FIR interpolator.
*/
typedef struct
{
uint8_t L; /**< upsample factor. */
uint16_t phaseLength; /**< length of each polyphase filter component. */
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
} arm_fir_interpolate_instance_f32;
/**
* @brief Processing function for the Q15 FIR interpolator.
* @param[in] S points to an instance of the Q15 FIR interpolator structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of input samples to process per call.
*/
void arm_fir_interpolate_q15(
const arm_fir_interpolate_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q15 FIR interpolator.
* @param[in,out] S points to an instance of the Q15 FIR interpolator structure.
* @param[in] L upsample factor.
* @param[in] numTaps number of filter coefficients in the filter.
* @param[in] pCoeffs points to the filter coefficient buffer.
* @param[in] pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
*/
arm_status arm_fir_interpolate_init_q15(
arm_fir_interpolate_instance_q15 * S,
uint8_t L,
uint16_t numTaps,
q15_t * pCoeffs,
q15_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 FIR interpolator.
* @param[in] S points to an instance of the Q15 FIR interpolator structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of input samples to process per call.
*/
void arm_fir_interpolate_q31(
const arm_fir_interpolate_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q31 FIR interpolator.
* @param[in,out] S points to an instance of the Q31 FIR interpolator structure.
* @param[in] L upsample factor.
* @param[in] numTaps number of filter coefficients in the filter.
* @param[in] pCoeffs points to the filter coefficient buffer.
* @param[in] pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
*/
arm_status arm_fir_interpolate_init_q31(
arm_fir_interpolate_instance_q31 * S,
uint8_t L,
uint16_t numTaps,
q31_t * pCoeffs,
q31_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the floating-point FIR interpolator.
* @param[in] S points to an instance of the floating-point FIR interpolator structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of input samples to process per call.
*/
void arm_fir_interpolate_f32(
const arm_fir_interpolate_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the floating-point FIR interpolator.
* @param[in,out] S points to an instance of the floating-point FIR interpolator structure.
* @param[in] L upsample factor.
* @param[in] numTaps number of filter coefficients in the filter.
* @param[in] pCoeffs points to the filter coefficient buffer.
* @param[in] pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
*/
arm_status arm_fir_interpolate_init_f32(
arm_fir_interpolate_instance_f32 * S,
uint8_t L,
uint16_t numTaps,
float32_t * pCoeffs,
float32_t * pState,
uint32_t blockSize);
/**
* @brief Instance structure for the high precision Q31 Biquad cascade filter.
*/
typedef struct
{
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
} arm_biquad_cas_df1_32x64_ins_q31;
/**
* @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of samples to process.
*/
void arm_biquad_cas_df1_32x64_q31(
const arm_biquad_cas_df1_32x64_ins_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] pCoeffs points to the filter coefficients.
* @param[in] pState points to the state buffer.
* @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
*/
void arm_biquad_cas_df1_32x64_init_q31(
arm_biquad_cas_df1_32x64_ins_q31 * S,
uint8_t numStages,
q31_t * pCoeffs,
q63_t * pState,
uint8_t postShift);
/**
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
*/
typedef struct
{
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
} arm_biquad_cascade_df2T_instance_f32;
/**
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
*/
typedef struct
{
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
} arm_biquad_cascade_stereo_df2T_instance_f32;
/**
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
*/
typedef struct
{
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
} arm_biquad_cascade_df2T_instance_f64;
/**
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
* @param[in] S points to an instance of the filter data structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of samples to process.
*/
void arm_biquad_cascade_df2T_f32(
const arm_biquad_cascade_df2T_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
* @param[in] S points to an instance of the filter data structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of samples to process.
*/
void arm_biquad_cascade_stereo_df2T_f32(
const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
* @param[in] S points to an instance of the filter data structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of samples to process.
*/
void arm_biquad_cascade_df2T_f64(
const arm_biquad_cascade_df2T_instance_f64 * S,
float64_t * pSrc,
float64_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
* @param[in,out] S points to an instance of the filter data structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] pCoeffs points to the filter coefficients.
* @param[in] pState points to the state buffer.
*/
void arm_biquad_cascade_df2T_init_f32(
arm_biquad_cascade_df2T_instance_f32 * S,
uint8_t numStages,
float32_t * pCoeffs,
float32_t * pState);
/**
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
* @param[in,out] S points to an instance of the filter data structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] pCoeffs points to the filter coefficients.
* @param[in] pState points to the state buffer.
*/
void arm_biquad_cascade_stereo_df2T_init_f32(
arm_biquad_cascade_stereo_df2T_instance_f32 * S,
uint8_t numStages,
float32_t * pCoeffs,
float32_t * pState);
/**
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
* @param[in,out] S points to an instance of the filter data structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] pCoeffs points to the filter coefficients.
* @param[in] pState points to the state buffer.
*/
void arm_biquad_cascade_df2T_init_f64(
arm_biquad_cascade_df2T_instance_f64 * S,
uint8_t numStages,
float64_t * pCoeffs,
float64_t * pState);
/**
* @brief Instance structure for the Q15 FIR lattice filter.
*/
typedef struct
{
uint16_t numStages; /**< number of filter stages. */
q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
} arm_fir_lattice_instance_q15;
/**
* @brief Instance structure for the Q31 FIR lattice filter.
*/
typedef struct
{
uint16_t numStages; /**< number of filter stages. */
q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
} arm_fir_lattice_instance_q31;
/**
* @brief Instance structure for the floating-point FIR lattice filter.
*/
typedef struct
{
uint16_t numStages; /**< number of filter stages. */
float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
} arm_fir_lattice_instance_f32;
/**
* @brief Initialization function for the Q15 FIR lattice filter.
* @param[in] S points to an instance of the Q15 FIR lattice structure.
* @param[in] numStages number of filter stages.
* @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
* @param[in] pState points to the state buffer. The array is of length numStages.
*/
void arm_fir_lattice_init_q15(
arm_fir_lattice_instance_q15 * S,
uint16_t numStages,
q15_t * pCoeffs,
q15_t * pState);
/**
* @brief Processing function for the Q15 FIR lattice filter.
* @param[in] S points to an instance of the Q15 FIR lattice structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_fir_lattice_q15(
const arm_fir_lattice_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q31 FIR lattice filter.
* @param[in] S points to an instance of the Q31 FIR lattice structure.
* @param[in] numStages number of filter stages.
* @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
* @param[in] pState points to the state buffer. The array is of length numStages.
*/
void arm_fir_lattice_init_q31(
arm_fir_lattice_instance_q31 * S,
uint16_t numStages,
q31_t * pCoeffs,
q31_t * pState);
/**
* @brief Processing function for the Q31 FIR lattice filter.
* @param[in] S points to an instance of the Q31 FIR lattice structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of samples to process.
*/
void arm_fir_lattice_q31(
const arm_fir_lattice_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the floating-point FIR lattice filter.
* @param[in] S points to an instance of the floating-point FIR lattice structure.
* @param[in] numStages number of filter stages.
* @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
* @param[in] pState points to the state buffer. The array is of length numStages.
*/
void arm_fir_lattice_init_f32(
arm_fir_lattice_instance_f32 * S,
uint16_t numStages,
float32_t * pCoeffs,
float32_t * pState);
/**
* @brief Processing function for the floating-point FIR lattice filter.
* @param[in] S points to an instance of the floating-point FIR lattice structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of samples to process.
*/
void arm_fir_lattice_f32(
const arm_fir_lattice_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Instance structure for the Q15 IIR lattice filter.
*/
typedef struct
{
uint16_t numStages; /**< number of stages in the filter. */
q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
} arm_iir_lattice_instance_q15;
/**
* @brief Instance structure for the Q31 IIR lattice filter.
*/
typedef struct
{
uint16_t numStages; /**< number of stages in the filter. */
q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
} arm_iir_lattice_instance_q31;
/**
* @brief Instance structure for the floating-point IIR lattice filter.
*/
typedef struct
{
uint16_t numStages; /**< number of stages in the filter. */
float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
} arm_iir_lattice_instance_f32;
/**
* @brief Processing function for the floating-point IIR lattice filter.
* @param[in] S points to an instance of the floating-point IIR lattice structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_iir_lattice_f32(
const arm_iir_lattice_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the floating-point IIR lattice filter.
* @param[in] S points to an instance of the floating-point IIR lattice structure.
* @param[in] numStages number of stages in the filter.
* @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
* @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
* @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.
* @param[in] blockSize number of samples to process.
*/
void arm_iir_lattice_init_f32(
arm_iir_lattice_instance_f32 * S,
uint16_t numStages,
float32_t * pkCoeffs,
float32_t * pvCoeffs,
float32_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 IIR lattice filter.
* @param[in] S points to an instance of the Q31 IIR lattice structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_iir_lattice_q31(
const arm_iir_lattice_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q31 IIR lattice filter.
* @param[in] S points to an instance of the Q31 IIR lattice structure.
* @param[in] numStages number of stages in the filter.
* @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
* @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
* @param[in] pState points to the state buffer. The array is of length numStages+blockSize.
* @param[in] blockSize number of samples to process.
*/
void arm_iir_lattice_init_q31(
arm_iir_lattice_instance_q31 * S,
uint16_t numStages,
q31_t * pkCoeffs,
q31_t * pvCoeffs,
q31_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the Q15 IIR lattice filter.
* @param[in] S points to an instance of the Q15 IIR lattice structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
*/
void arm_iir_lattice_q15(
const arm_iir_lattice_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q15 IIR lattice filter.
* @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.
* @param[in] numStages number of stages in the filter.
* @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
* @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
* @param[in] pState points to state buffer. The array is of length numStages+blockSize.
* @param[in] blockSize number of samples to process per call.
*/
void arm_iir_lattice_init_q15(
arm_iir_lattice_instance_q15 * S,
uint16_t numStages,
q15_t * pkCoeffs,
q15_t * pvCoeffs,
q15_t * pState,
uint32_t blockSize);
/**
* @brief Instance structure for the floating-point LMS filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
float32_t mu; /**< step size that controls filter coefficient updates. */
} arm_lms_instance_f32;
/**
* @brief Processing function for floating-point LMS filter.
* @param[in] S points to an instance of the floating-point LMS filter structure.
* @param[in] pSrc points to the block of input data.
* @param[in] pRef points to the block of reference data.
* @param[out] pOut points to the block of output data.
* @param[out] pErr points to the block of error data.
* @param[in] blockSize number of samples to process.
*/
void arm_lms_f32(
const arm_lms_instance_f32 * S,
float32_t * pSrc,
float32_t * pRef,
float32_t * pOut,
float32_t * pErr,
uint32_t blockSize);
/**
* @brief Initialization function for floating-point LMS filter.
* @param[in] S points to an instance of the floating-point LMS filter structure.
* @param[in] numTaps number of filter coefficients.
* @param[in] pCoeffs points to the coefficient buffer.
* @param[in] pState points to state buffer.
* @param[in] mu step size that controls filter coefficient updates.
* @param[in] blockSize number of samples to process.
*/
void arm_lms_init_f32(
arm_lms_instance_f32 * S,
uint16_t numTaps,
float32_t * pCoeffs,
float32_t * pState,
float32_t mu,
uint32_t blockSize);
/**
* @brief Instance structure for the Q15 LMS filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
q15_t mu; /**< step size that controls filter coefficient updates. */
uint32_t postShift; /**< bit shift applied to coefficients. */
} arm_lms_instance_q15;
/**
* @brief Initialization function for the Q15 LMS filter.
* @param[in] S points to an instance of the Q15 LMS filter structure.
* @param[in] numTaps number of filter coefficients.
* @param[in] pCoeffs points to the coefficient buffer.
* @param[in] pState points to the state buffer.
* @param[in] mu step size that controls filter coefficient updates.
* @param[in] blockSize number of samples to process.
* @param[in] postShift bit shift applied to coefficients.
*/
void arm_lms_init_q15(
arm_lms_instance_q15 * S,
uint16_t numTaps,
q15_t * pCoeffs,
q15_t * pState,
q15_t mu,
uint32_t blockSize,
uint32_t postShift);
/**
* @brief Processing function for Q15 LMS filter.
* @param[in] S points to an instance of the Q15 LMS filter structure.
* @param[in] pSrc points to the block of input data.
* @param[in] pRef points to the block of reference data.
* @param[out] pOut points to the block of output data.
* @param[out] pErr points to the block of error data.
* @param[in] blockSize number of samples to process.
*/
void arm_lms_q15(
const arm_lms_instance_q15 * S,
q15_t * pSrc,
q15_t * pRef,
q15_t * pOut,
q15_t * pErr,
uint32_t blockSize);
/**
* @brief Instance structure for the Q31 LMS filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
q31_t mu; /**< step size that controls filter coefficient updates. */
uint32_t postShift; /**< bit shift applied to coefficients. */
} arm_lms_instance_q31;
/**
* @brief Processing function for Q31 LMS filter.
* @param[in] S points to an instance of the Q15 LMS filter structure.
* @param[in] pSrc points to the block of input data.
* @param[in] pRef points to the block of reference data.
* @param[out] pOut points to the block of output data.
* @param[out] pErr points to the block of error data.
* @param[in] blockSize number of samples to process.
*/
void arm_lms_q31(
const arm_lms_instance_q31 * S,
q31_t * pSrc,
q31_t * pRef,
q31_t * pOut,
q31_t * pErr,
uint32_t blockSize);
/**
* @brief Initialization function for Q31 LMS filter.
* @param[in] S points to an instance of the Q31 LMS filter structure.
* @param[in] numTaps number of filter coefficients.
* @param[in] pCoeffs points to coefficient buffer.
* @param[in] pState points to state buffer.
* @param[in] mu step size that controls filter coefficient updates.
* @param[in] blockSize number of samples to process.
* @param[in] postShift bit shift applied to coefficients.
*/
void arm_lms_init_q31(
arm_lms_instance_q31 * S,
uint16_t numTaps,
q31_t * pCoeffs,
q31_t * pState,
q31_t mu,
uint32_t blockSize,
uint32_t postShift);
/**
* @brief Instance structure for the floating-point normalized LMS filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
float32_t mu; /**< step size that control filter coefficient updates. */
float32_t energy; /**< saves previous frame energy. */
float32_t x0; /**< saves previous input sample. */
} arm_lms_norm_instance_f32;
/**
* @brief Processing function for floating-point normalized LMS filter.
* @param[in] S points to an instance of the floating-point normalized LMS filter structure.
* @param[in] pSrc points to the block of input data.
* @param[in] pRef points to the block of reference data.
* @param[out] pOut points to the block of output data.
* @param[out] pErr points to the block of error data.
* @param[in] blockSize number of samples to process.
*/
void arm_lms_norm_f32(
arm_lms_norm_instance_f32 * S,
float32_t * pSrc,
float32_t * pRef,
float32_t * pOut,
float32_t * pErr,
uint32_t blockSize);
/**
* @brief Initialization function for floating-point normalized LMS filter.
* @param[in] S points to an instance of the floating-point LMS filter structure.
* @param[in] numTaps number of filter coefficients.
* @param[in] pCoeffs points to coefficient buffer.
* @param[in] pState points to state buffer.
* @param[in] mu step size that controls filter coefficient updates.
* @param[in] blockSize number of samples to process.
*/
void arm_lms_norm_init_f32(
arm_lms_norm_instance_f32 * S,
uint16_t numTaps,
float32_t * pCoeffs,
float32_t * pState,
float32_t mu,
uint32_t blockSize);
/**
* @brief Instance structure for the Q31 normalized LMS filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
q31_t mu; /**< step size that controls filter coefficient updates. */
uint8_t postShift; /**< bit shift applied to coefficients. */
q31_t *recipTable; /**< points to the reciprocal initial value table. */
q31_t energy; /**< saves previous frame energy. */
q31_t x0; /**< saves previous input sample. */
} arm_lms_norm_instance_q31;
/**
* @brief Processing function for Q31 normalized LMS filter.
* @param[in] S points to an instance of the Q31 normalized LMS filter structure.
* @param[in] pSrc points to the block of input data.
* @param[in] pRef points to the block of reference data.
* @param[out] pOut points to the block of output data.
* @param[out] pErr points to the block of error data.
* @param[in] blockSize number of samples to process.
*/
void arm_lms_norm_q31(
arm_lms_norm_instance_q31 * S,
q31_t * pSrc,
q31_t * pRef,
q31_t * pOut,
q31_t * pErr,
uint32_t blockSize);
/**
* @brief Initialization function for Q31 normalized LMS filter.
* @param[in] S points to an instance of the Q31 normalized LMS filter structure.
* @param[in] numTaps number of filter coefficients.
* @param[in] pCoeffs points to coefficient buffer.
* @param[in] pState points to state buffer.
* @param[in] mu step size that controls filter coefficient updates.
* @param[in] blockSize number of samples to process.
* @param[in] postShift bit shift applied to coefficients.
*/
void arm_lms_norm_init_q31(
arm_lms_norm_instance_q31 * S,
uint16_t numTaps,
q31_t * pCoeffs,
q31_t * pState,
q31_t mu,
uint32_t blockSize,
uint8_t postShift);
/**
* @brief Instance structure for the Q15 normalized LMS filter.
*/
typedef struct
{
uint16_t numTaps; /**< Number of coefficients in the filter. */
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
q15_t mu; /**< step size that controls filter coefficient updates. */
uint8_t postShift; /**< bit shift applied to coefficients. */
q15_t *recipTable; /**< Points to the reciprocal initial value table. */
q15_t energy; /**< saves previous frame energy. */
q15_t x0; /**< saves previous input sample. */
} arm_lms_norm_instance_q15;
/**
* @brief Processing function for Q15 normalized LMS filter.
* @param[in] S points to an instance of the Q15 normalized LMS filter structure.
* @param[in] pSrc points to the block of input data.
* @param[in] pRef points to the block of reference data.
* @param[out] pOut points to the block of output data.
* @param[out] pErr points to the block of error data.
* @param[in] blockSize number of samples to process.
*/
void arm_lms_norm_q15(
arm_lms_norm_instance_q15 * S,
q15_t * pSrc,
q15_t * pRef,
q15_t * pOut,
q15_t * pErr,
uint32_t blockSize);
/**
* @brief Initialization function for Q15 normalized LMS filter.
* @param[in] S points to an instance of the Q15 normalized LMS filter structure.
* @param[in] numTaps number of filter coefficients.
* @param[in] pCoeffs points to coefficient buffer.
* @param[in] pState points to state buffer.
* @param[in] mu step size that controls filter coefficient updates.
* @param[in] blockSize number of samples to process.
* @param[in] postShift bit shift applied to coefficients.
*/
void arm_lms_norm_init_q15(
arm_lms_norm_instance_q15 * S,
uint16_t numTaps,
q15_t * pCoeffs,
q15_t * pState,
q15_t mu,
uint32_t blockSize,
uint8_t postShift);
/**
* @brief Correlation of floating-point sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
*/
void arm_correlate_f32(
float32_t * pSrcA,
uint32_t srcALen,
float32_t * pSrcB,
uint32_t srcBLen,
float32_t * pDst);
/**
* @brief Correlation of Q15 sequences
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
* @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
*/
void arm_correlate_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
q15_t * pScratch);
/**
* @brief Correlation of Q15 sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
*/
void arm_correlate_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst);
/**
* @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
*/
void arm_correlate_fast_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst);
/**
* @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
* @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
*/
void arm_correlate_fast_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
q15_t * pScratch);
/**
* @brief Correlation of Q31 sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
*/
void arm_correlate_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst);
/**
* @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
*/
void arm_correlate_fast_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst);
/**
* @brief Correlation of Q7 sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
* @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
* @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
*/
void arm_correlate_opt_q7(
q7_t * pSrcA,
uint32_t srcALen,
q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst,
q15_t * pScratch1,
q15_t * pScratch2);
/**
* @brief Correlation of Q7 sequences.
* @param[in] pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
*/
void arm_correlate_q7(
q7_t * pSrcA,
uint32_t srcALen,
q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst);
/**
* @brief Instance structure for the floating-point sparse FIR filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
} arm_fir_sparse_instance_f32;
/**
* @brief Instance structure for the Q31 sparse FIR filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
} arm_fir_sparse_instance_q31;
/**
* @brief Instance structure for the Q15 sparse FIR filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
} arm_fir_sparse_instance_q15;
/**
* @brief Instance structure for the Q7 sparse FIR filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
} arm_fir_sparse_instance_q7;
/**
* @brief Processing function for the floating-point sparse FIR filter.
* @param[in] S points to an instance of the floating-point sparse FIR structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] pScratchIn points to a temporary buffer of size blockSize.
* @param[in] blockSize number of input samples to process per call.
*/
void arm_fir_sparse_f32(
arm_fir_sparse_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
float32_t * pScratchIn,
uint32_t blockSize);
/**
* @brief Initialization function for the floating-point sparse FIR filter.
* @param[in,out] S points to an instance of the floating-point sparse FIR structure.
* @param[in] numTaps number of nonzero coefficients in the filter.
* @param[in] pCoeffs points to the array of filter coefficients.
* @param[in] pState points to the state buffer.
* @param[in] pTapDelay points to the array of offset times.
* @param[in] maxDelay maximum offset time supported.
* @param[in] blockSize number of samples that will be processed per block.
*/
void arm_fir_sparse_init_f32(
arm_fir_sparse_instance_f32 * S,
uint16_t numTaps,
float32_t * pCoeffs,
float32_t * pState,
int32_t * pTapDelay,
uint16_t maxDelay,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 sparse FIR filter.
* @param[in] S points to an instance of the Q31 sparse FIR structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] pScratchIn points to a temporary buffer of size blockSize.
* @param[in] blockSize number of input samples to process per call.
*/
void arm_fir_sparse_q31(
arm_fir_sparse_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
q31_t * pScratchIn,
uint32_t blockSize);
/**
* @brief Initialization function for the Q31 sparse FIR filter.
* @param[in,out] S points to an instance of the Q31 sparse FIR structure.
* @param[in] numTaps number of nonzero coefficients in the filter.
* @param[in] pCoeffs points to the array of filter coefficients.
* @param[in] pState points to the state buffer.
* @param[in] pTapDelay points to the array of offset times.
* @param[in] maxDelay maximum offset time supported.
* @param[in] blockSize number of samples that will be processed per block.
*/
void arm_fir_sparse_init_q31(
arm_fir_sparse_instance_q31 * S,
uint16_t numTaps,
q31_t * pCoeffs,
q31_t * pState,
int32_t * pTapDelay,
uint16_t maxDelay,
uint32_t blockSize);
/**
* @brief Processing function for the Q15 sparse FIR filter.
* @param[in] S points to an instance of the Q15 sparse FIR structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] pScratchIn points to a temporary buffer of size blockSize.
* @param[in] pScratchOut points to a temporary buffer of size blockSize.
* @param[in] blockSize number of input samples to process per call.
*/
void arm_fir_sparse_q15(
arm_fir_sparse_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
q15_t * pScratchIn,
q31_t * pScratchOut,
uint32_t blockSize);
/**
* @brief Initialization function for the Q15 sparse FIR filter.
* @param[in,out] S points to an instance of the Q15 sparse FIR structure.
* @param[in] numTaps number of nonzero coefficients in the filter.
* @param[in] pCoeffs points to the array of filter coefficients.
* @param[in] pState points to the state buffer.
* @param[in] pTapDelay points to the array of offset times.
* @param[in] maxDelay maximum offset time supported.
* @param[in] blockSize number of samples that will be processed per block.
*/
void arm_fir_sparse_init_q15(
arm_fir_sparse_instance_q15 * S,
uint16_t numTaps,
q15_t * pCoeffs,
q15_t * pState,
int32_t * pTapDelay,
uint16_t maxDelay,
uint32_t blockSize);
/**
* @brief Processing function for the Q7 sparse FIR filter.
* @param[in] S points to an instance of the Q7 sparse FIR structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] pScratchIn points to a temporary buffer of size blockSize.
* @param[in] pScratchOut points to a temporary buffer of size blockSize.
* @param[in] blockSize number of input samples to process per call.
*/
void arm_fir_sparse_q7(
arm_fir_sparse_instance_q7 * S,
q7_t * pSrc,
q7_t * pDst,
q7_t * pScratchIn,
q31_t * pScratchOut,
uint32_t blockSize);
/**
* @brief Initialization function for the Q7 sparse FIR filter.
* @param[in,out] S points to an instance of the Q7 sparse FIR structure.
* @param[in] numTaps number of nonzero coefficients in the filter.
* @param[in] pCoeffs points to the array of filter coefficients.
* @param[in] pState points to the state buffer.
* @param[in] pTapDelay points to the array of offset times.
* @param[in] maxDelay maximum offset time supported.
* @param[in] blockSize number of samples that will be processed per block.
*/
void arm_fir_sparse_init_q7(
arm_fir_sparse_instance_q7 * S,
uint16_t numTaps,
q7_t * pCoeffs,
q7_t * pState,
int32_t * pTapDelay,
uint16_t maxDelay,
uint32_t blockSize);
/**
* @brief Floating-point sin_cos function.
* @param[in] theta input value in degrees
* @param[out] pSinVal points to the processed sine output.
* @param[out] pCosVal points to the processed cos output.
*/
void arm_sin_cos_f32(
float32_t theta,
float32_t * pSinVal,
float32_t * pCosVal);
/**
* @brief Q31 sin_cos function.
* @param[in] theta scaled input value in degrees
* @param[out] pSinVal points to the processed sine output.
* @param[out] pCosVal points to the processed cosine output.
*/
void arm_sin_cos_q31(
q31_t theta,
q31_t * pSinVal,
q31_t * pCosVal);
/**
* @brief Floating-point complex conjugate.
* @param[in] pSrc points to the input vector
* @param[out] pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
*/
void arm_cmplx_conj_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples);
/**
* @brief Q31 complex conjugate.
* @param[in] pSrc points to the input vector
* @param[out] pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
*/
void arm_cmplx_conj_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples);
/**
* @brief Q15 complex conjugate.
* @param[in] pSrc points to the input vector
* @param[out] pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
*/
void arm_cmplx_conj_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples);
/**
* @brief Floating-point complex magnitude squared
* @param[in] pSrc points to the complex input vector
* @param[out] pDst points to the real output vector
* @param[in] numSamples number of complex samples in the input vector
*/
void arm_cmplx_mag_squared_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples);
/**
* @brief Q31 complex magnitude squared
* @param[in] pSrc points to the complex input vector
* @param[out] pDst points to the real output vector
* @param[in] numSamples number of complex samples in the input vector
*/
void arm_cmplx_mag_squared_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples);
/**
* @brief Q15 complex magnitude squared
* @param[in] pSrc points to the complex input vector
* @param[out] pDst points to the real output vector
* @param[in] numSamples number of complex samples in the input vector
*/
void arm_cmplx_mag_squared_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples);
/**
* @ingroup groupController
*/
/**
* @defgroup PID PID Motor Control
*
* A Proportional Integral Derivative (PID) controller is a generic feedback control
* loop mechanism widely used in industrial control systems.
* A PID controller is the most commonly used type of feedback controller.
*
* This set of functions implements (PID) controllers
* for Q15, Q31, and floating-point data types. The functions operate on a single sample
* of data and each call to the function returns a single processed value.
* <code>S</code> points to an instance of the PID control data structure. <code>in</code>
* is the input sample value. The functions return the output value.
*
* \par Algorithm:
* <pre>
* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
* A0 = Kp + Ki + Kd
* A1 = (-Kp ) - (2 * Kd )
* A2 = Kd </pre>
*
* \par
* where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
*
* \par
* \image html PID.gif "Proportional Integral Derivative Controller"
*
* \par
* The PID controller calculates an "error" value as the difference between
* the measured output and the reference input.
* The controller attempts to minimize the error by adjusting the process control inputs.
* The proportional value determines the reaction to the current error,
* the integral value determines the reaction based on the sum of recent errors,
* and the derivative value determines the reaction based on the rate at which the error has been changing.
*
* \par Instance Structure
* The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
* A separate instance structure must be defined for each PID Controller.
* There are separate instance structure declarations for each of the 3 supported data types.
*
* \par Reset Functions
* There is also an associated reset function for each data type which clears the state array.
*
* \par Initialization Functions
* There is also an associated initialization function for each data type.
* The initialization function performs the following operations:
* - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
* - Zeros out the values in the state buffer.
*
* \par
* Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
*
* \par Fixed-Point Behavior
* Care must be taken when using the fixed-point versions of the PID Controller functions.
* In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
* Refer to the function specific documentation below for usage guidelines.
*/
/**
* @addtogroup PID
* @{
*/
/**
* @brief Process function for the floating-point PID Control.
* @param[in,out] S is an instance of the floating-point PID Control structure
* @param[in] in input sample to process
* @return out processed output sample.
*/
static __INLINE float32_t arm_pid_f32(
arm_pid_instance_f32 * S,
float32_t in)
{
float32_t out;
/* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
out = (S->A0 * in) +
(S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
/* Update state */
S->state[1] = S->state[0];
S->state[0] = in;
S->state[2] = out;
/* return to application */
return (out);
}
/**
* @brief Process function for the Q31 PID Control.
* @param[in,out] S points to an instance of the Q31 PID Control structure
* @param[in] in input sample to process
* @return out processed output sample.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 64-bit accumulator.
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
* Thus, if the accumulator result overflows it wraps around rather than clip.
* In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
* After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
*/
static __INLINE q31_t arm_pid_q31(
arm_pid_instance_q31 * S,
q31_t in)
{
q63_t acc;
q31_t out;
/* acc = A0 * x[n] */
acc = (q63_t) S->A0 * in;
/* acc += A1 * x[n-1] */
acc += (q63_t) S->A1 * S->state[0];
/* acc += A2 * x[n-2] */
acc += (q63_t) S->A2 * S->state[1];
/* convert output to 1.31 format to add y[n-1] */
out = (q31_t) (acc >> 31u);
/* out += y[n-1] */
out += S->state[2];
/* Update state */
S->state[1] = S->state[0];
S->state[0] = in;
S->state[2] = out;
/* return to application */
return (out);
}
/**
* @brief Process function for the Q15 PID Control.
* @param[in,out] S points to an instance of the Q15 PID Control structure
* @param[in] in input sample to process
* @return out processed output sample.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using a 64-bit internal accumulator.
* Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
* After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
* Lastly, the accumulator is saturated to yield a result in 1.15 format.
*/
static __INLINE q15_t arm_pid_q15(
arm_pid_instance_q15 * S,
q15_t in)
{
q63_t acc;
q15_t out;
#ifndef ARM_MATH_CM0_FAMILY
__SIMD32_TYPE *vstate;
/* Implementation of PID controller */
/* acc = A0 * x[n] */
acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);
/* acc += A1 * x[n-1] + A2 * x[n-2] */
vstate = __SIMD32_CONST(S->state);
acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc);
#else
/* acc = A0 * x[n] */
acc = ((q31_t) S->A0) * in;
/* acc += A1 * x[n-1] + A2 * x[n-2] */
acc += (q31_t) S->A1 * S->state[0];
acc += (q31_t) S->A2 * S->state[1];
#endif
/* acc += y[n-1] */
acc += (q31_t) S->state[2] << 15;
/* saturate the output */
out = (q15_t) (__SSAT((acc >> 15), 16));
/* Update state */
S->state[1] = S->state[0];
S->state[0] = in;
S->state[2] = out;
/* return to application */
return (out);
}
/**
* @} end of PID group
*/
/**
* @brief Floating-point matrix inverse.
* @param[in] src points to the instance of the input floating-point matrix structure.
* @param[out] dst points to the instance of the output floating-point matrix structure.
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
* If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
*/
arm_status arm_mat_inverse_f32(
const arm_matrix_instance_f32 * src,
arm_matrix_instance_f32 * dst);
/**
* @brief Floating-point matrix inverse.
* @param[in] src points to the instance of the input floating-point matrix structure.
* @param[out] dst points to the instance of the output floating-point matrix structure.
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
* If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
*/
arm_status arm_mat_inverse_f64(
const arm_matrix_instance_f64 * src,
arm_matrix_instance_f64 * dst);
/**
* @ingroup groupController
*/
/**
* @defgroup clarke Vector Clarke Transform
* Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
* Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
* in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
* When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
* \image html clarke.gif Stator current space vector and its components in (a,b).
* and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
* can be calculated using only <code>Ia</code> and <code>Ib</code>.
*
* The function operates on a single sample of data and each call to the function returns the processed output.
* The library provides separate functions for Q31 and floating-point data types.
* \par Algorithm
* \image html clarkeFormula.gif
* where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
* <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
* \par Fixed-Point Behavior
* Care must be taken when using the Q31 version of the Clarke transform.
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
* Refer to the function specific documentation below for usage guidelines.
*/
/**
* @addtogroup clarke
* @{
*/
/**
*
* @brief Floating-point Clarke transform
* @param[in] Ia input three-phase coordinate <code>a</code>
* @param[in] Ib input three-phase coordinate <code>b</code>
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta
*/
static __INLINE void arm_clarke_f32(
float32_t Ia,
float32_t Ib,
float32_t * pIalpha,
float32_t * pIbeta)
{
/* Calculate pIalpha using the equation, pIalpha = Ia */
*pIalpha = Ia;
/* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
*pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
}
/**
* @brief Clarke transform for Q31 version
* @param[in] Ia input three-phase coordinate <code>a</code>
* @param[in] Ib input three-phase coordinate <code>b</code>
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 32-bit accumulator.
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
* There is saturation on the addition, hence there is no risk of overflow.
*/
static __INLINE void arm_clarke_q31(
q31_t Ia,
q31_t Ib,
q31_t * pIalpha,
q31_t * pIbeta)
{
q31_t product1, product2; /* Temporary variables used to store intermediate results */
/* Calculating pIalpha from Ia by equation pIalpha = Ia */
*pIalpha = Ia;
/* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
/* Intermediate product is calculated by (2/sqrt(3) * Ib) */
product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
/* pIbeta is calculated by adding the intermediate products */
*pIbeta = __QADD(product1, product2);
}
/**
* @} end of clarke group
*/
/**
* @brief Converts the elements of the Q7 vector to Q31 vector.
* @param[in] pSrc input pointer
* @param[out] pDst output pointer
* @param[in] blockSize number of samples to process
*/
void arm_q7_to_q31(
q7_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @ingroup groupController
*/
/**
* @defgroup inv_clarke Vector Inverse Clarke Transform
* Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
*
* The function operates on a single sample of data and each call to the function returns the processed output.
* The library provides separate functions for Q31 and floating-point data types.
* \par Algorithm
* \image html clarkeInvFormula.gif
* where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
* <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
* \par Fixed-Point Behavior
* Care must be taken when using the Q31 version of the Clarke transform.
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
* Refer to the function specific documentation below for usage guidelines.
*/
/**
* @addtogroup inv_clarke
* @{
*/
/**
* @brief Floating-point Inverse Clarke transform
* @param[in] Ialpha input two-phase orthogonal vector axis alpha
* @param[in] Ibeta input two-phase orthogonal vector axis beta
* @param[out] pIa points to output three-phase coordinate <code>a</code>
* @param[out] pIb points to output three-phase coordinate <code>b</code>
*/
static __INLINE void arm_inv_clarke_f32(
float32_t Ialpha,
float32_t Ibeta,
float32_t * pIa,
float32_t * pIb)
{
/* Calculating pIa from Ialpha by equation pIa = Ialpha */
*pIa = Ialpha;
/* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
*pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
}
/**
* @brief Inverse Clarke transform for Q31 version
* @param[in] Ialpha input two-phase orthogonal vector axis alpha
* @param[in] Ibeta input two-phase orthogonal vector axis beta
* @param[out] pIa points to output three-phase coordinate <code>a</code>
* @param[out] pIb points to output three-phase coordinate <code>b</code>
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 32-bit accumulator.
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
* There is saturation on the subtraction, hence there is no risk of overflow.
*/
static __INLINE void arm_inv_clarke_q31(
q31_t Ialpha,
q31_t Ibeta,
q31_t * pIa,
q31_t * pIb)
{
q31_t product1, product2; /* Temporary variables used to store intermediate results */
/* Calculating pIa from Ialpha by equation pIa = Ialpha */
*pIa = Ialpha;
/* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
/* Intermediate product is calculated by (1/sqrt(3) * pIb) */
product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
/* pIb is calculated by subtracting the products */
*pIb = __QSUB(product2, product1);
}
/**
* @} end of inv_clarke group
*/
/**
* @brief Converts the elements of the Q7 vector to Q15 vector.
* @param[in] pSrc input pointer
* @param[out] pDst output pointer
* @param[in] blockSize number of samples to process
*/
void arm_q7_to_q15(
q7_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @ingroup groupController
*/
/**
* @defgroup park Vector Park Transform
*
* Forward Park transform converts the input two-coordinate vector to flux and torque components.
* The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
* from the stationary to the moving reference frame and control the spatial relationship between
* the stator vector current and rotor flux vector.
* If we consider the d axis aligned with the rotor flux, the diagram below shows the
* current vector and the relationship from the two reference frames:
* \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
*
* The function operates on a single sample of data and each call to the function returns the processed output.
* The library provides separate functions for Q31 and floating-point data types.
* \par Algorithm
* \image html parkFormula.gif
* where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
* <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
* cosine and sine values of theta (rotor flux position).
* \par Fixed-Point Behavior
* Care must be taken when using the Q31 version of the Park transform.
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
* Refer to the function specific documentation below for usage guidelines.
*/
/**
* @addtogroup park
* @{
*/
/**
* @brief Floating-point Park transform
* @param[in] Ialpha input two-phase vector coordinate alpha
* @param[in] Ibeta input two-phase vector coordinate beta
* @param[out] pId points to output rotor reference frame d
* @param[out] pIq points to output rotor reference frame q
* @param[in] sinVal sine value of rotation angle theta
* @param[in] cosVal cosine value of rotation angle theta
*
* The function implements the forward Park transform.
*
*/
static __INLINE void arm_park_f32(
float32_t Ialpha,
float32_t Ibeta,
float32_t * pId,
float32_t * pIq,
float32_t sinVal,
float32_t cosVal)
{
/* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
*pId = Ialpha * cosVal + Ibeta * sinVal;
/* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
*pIq = -Ialpha * sinVal + Ibeta * cosVal;
}
/**
* @brief Park transform for Q31 version
* @param[in] Ialpha input two-phase vector coordinate alpha
* @param[in] Ibeta input two-phase vector coordinate beta
* @param[out] pId points to output rotor reference frame d
* @param[out] pIq points to output rotor reference frame q
* @param[in] sinVal sine value of rotation angle theta
* @param[in] cosVal cosine value of rotation angle theta
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 32-bit accumulator.
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
* There is saturation on the addition and subtraction, hence there is no risk of overflow.
*/
static __INLINE void arm_park_q31(
q31_t Ialpha,
q31_t Ibeta,
q31_t * pId,
q31_t * pIq,
q31_t sinVal,
q31_t cosVal)
{
q31_t product1, product2; /* Temporary variables used to store intermediate results */
q31_t product3, product4; /* Temporary variables used to store intermediate results */
/* Intermediate product is calculated by (Ialpha * cosVal) */
product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
/* Intermediate product is calculated by (Ibeta * sinVal) */
product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
/* Intermediate product is calculated by (Ialpha * sinVal) */
product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
/* Intermediate product is calculated by (Ibeta * cosVal) */
product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
/* Calculate pId by adding the two intermediate products 1 and 2 */
*pId = __QADD(product1, product2);
/* Calculate pIq by subtracting the two intermediate products 3 from 4 */
*pIq = __QSUB(product4, product3);
}
/**
* @} end of park group
*/
/**
* @brief Converts the elements of the Q7 vector to floating-point vector.
* @param[in] pSrc is input pointer
* @param[out] pDst is output pointer
* @param[in] blockSize is the number of samples to process
*/
void arm_q7_to_float(
q7_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @ingroup groupController
*/
/**
* @defgroup inv_park Vector Inverse Park transform
* Inverse Park transform converts the input flux and torque components to two-coordinate vector.
*
* The function operates on a single sample of data and each call to the function returns the processed output.
* The library provides separate functions for Q31 and floating-point data types.
* \par Algorithm
* \image html parkInvFormula.gif
* where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
* <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
* cosine and sine values of theta (rotor flux position).
* \par Fixed-Point Behavior
* Care must be taken when using the Q31 version of the Park transform.
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
* Refer to the function specific documentation below for usage guidelines.
*/
/**
* @addtogroup inv_park
* @{
*/
/**
* @brief Floating-point Inverse Park transform
* @param[in] Id input coordinate of rotor reference frame d
* @param[in] Iq input coordinate of rotor reference frame q
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta
* @param[in] sinVal sine value of rotation angle theta
* @param[in] cosVal cosine value of rotation angle theta
*/
static __INLINE void arm_inv_park_f32(
float32_t Id,
float32_t Iq,
float32_t * pIalpha,
float32_t * pIbeta,
float32_t sinVal,
float32_t cosVal)
{
/* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
*pIalpha = Id * cosVal - Iq * sinVal;
/* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
*pIbeta = Id * sinVal + Iq * cosVal;
}
/**
* @brief Inverse Park transform for Q31 version
* @param[in] Id input coordinate of rotor reference frame d
* @param[in] Iq input coordinate of rotor reference frame q
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta
* @param[in] sinVal sine value of rotation angle theta
* @param[in] cosVal cosine value of rotation angle theta
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 32-bit accumulator.
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
* There is saturation on the addition, hence there is no risk of overflow.
*/
static __INLINE void arm_inv_park_q31(
q31_t Id,
q31_t Iq,
q31_t * pIalpha,
q31_t * pIbeta,
q31_t sinVal,
q31_t cosVal)
{
q31_t product1, product2; /* Temporary variables used to store intermediate results */
q31_t product3, product4; /* Temporary variables used to store intermediate results */
/* Intermediate product is calculated by (Id * cosVal) */
product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
/* Intermediate product is calculated by (Iq * sinVal) */
product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
/* Intermediate product is calculated by (Id * sinVal) */
product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
/* Intermediate product is calculated by (Iq * cosVal) */
product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
/* Calculate pIalpha by using the two intermediate products 1 and 2 */
*pIalpha = __QSUB(product1, product2);
/* Calculate pIbeta by using the two intermediate products 3 and 4 */
*pIbeta = __QADD(product4, product3);
}
/**
* @} end of Inverse park group
*/
/**
* @brief Converts the elements of the Q31 vector to floating-point vector.
* @param[in] pSrc is input pointer
* @param[out] pDst is output pointer
* @param[in] blockSize is the number of samples to process
*/
void arm_q31_to_float(
q31_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @ingroup groupInterpolation
*/
/**
* @defgroup LinearInterpolate Linear Interpolation
*
* Linear interpolation is a method of curve fitting using linear polynomials.
* Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
*
* \par
* \image html LinearInterp.gif "Linear interpolation"
*
* \par
* A Linear Interpolate function calculates an output value(y), for the input(x)
* using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
*
* \par Algorithm:
* <pre>
* y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
* where x0, x1 are nearest values of input x
* y0, y1 are nearest values to output y
* </pre>
*
* \par
* This set of functions implements Linear interpolation process
* for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
* sample of data and each call to the function returns a single processed value.
* <code>S</code> points to an instance of the Linear Interpolate function data structure.
* <code>x</code> is the input sample value. The functions returns the output value.
*
* \par
* if x is outside of the table boundary, Linear interpolation returns first value of the table
* if x is below input range and returns last value of table if x is above range.
*/
/**
* @addtogroup LinearInterpolate
* @{
*/
/**
* @brief Process function for the floating-point Linear Interpolation Function.
* @param[in,out] S is an instance of the floating-point Linear Interpolation structure
* @param[in] x input sample to process
* @return y processed output sample.
*
*/
static __INLINE float32_t arm_linear_interp_f32(
arm_linear_interp_instance_f32 * S,
float32_t x)
{
float32_t y;
float32_t x0, x1; /* Nearest input values */
float32_t y0, y1; /* Nearest output values */
float32_t xSpacing = S->xSpacing; /* spacing between input values */
int32_t i; /* Index variable */
float32_t *pYData = S->pYData; /* pointer to output table */
/* Calculation of index */
i = (int32_t) ((x - S->x1) / xSpacing);
if(i < 0)
{
/* Iniatilize output for below specified range as least output value of table */
y = pYData[0];
}
else if((uint32_t)i >= S->nValues)
{
/* Iniatilize output for above specified range as last output value of table */
y = pYData[S->nValues - 1];
}
else
{
/* Calculation of nearest input values */
x0 = S->x1 + i * xSpacing;
x1 = S->x1 + (i + 1) * xSpacing;
/* Read of nearest output values */
y0 = pYData[i];
y1 = pYData[i + 1];
/* Calculation of output */
y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
}
/* returns output value */
return (y);
}
/**
*
* @brief Process function for the Q31 Linear Interpolation Function.
* @param[in] pYData pointer to Q31 Linear Interpolation table
* @param[in] x input sample to process
* @param[in] nValues number of table values
* @return y processed output sample.
*
* \par
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
* This function can support maximum of table size 2^12.
*
*/
static __INLINE q31_t arm_linear_interp_q31(
q31_t * pYData,
q31_t x,
uint32_t nValues)
{
q31_t y; /* output */
q31_t y0, y1; /* Nearest output values */
q31_t fract; /* fractional part */
int32_t index; /* Index to read nearest output values */
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
index = ((x & (q31_t)0xFFF00000) >> 20);
if(index >= (int32_t)(nValues - 1))
{
return (pYData[nValues - 1]);
}
else if(index < 0)
{
return (pYData[0]);
}
else
{
/* 20 bits for the fractional part */
/* shift left by 11 to keep fract in 1.31 format */
fract = (x & 0x000FFFFF) << 11;
/* Read two nearest output values from the index in 1.31(q31) format */
y0 = pYData[index];
y1 = pYData[index + 1];
/* Calculation of y0 * (1-fract) and y is in 2.30 format */
y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
/* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
y += ((q31_t) (((q63_t) y1 * fract) >> 32));
/* Convert y to 1.31 format */
return (y << 1u);
}
}
/**
*
* @brief Process function for the Q15 Linear Interpolation Function.
* @param[in] pYData pointer to Q15 Linear Interpolation table
* @param[in] x input sample to process
* @param[in] nValues number of table values
* @return y processed output sample.
*
* \par
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
* This function can support maximum of table size 2^12.
*
*/
static __INLINE q15_t arm_linear_interp_q15(
q15_t * pYData,
q31_t x,
uint32_t nValues)
{
q63_t y; /* output */
q15_t y0, y1; /* Nearest output values */
q31_t fract; /* fractional part */
int32_t index; /* Index to read nearest output values */
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
index = ((x & (int32_t)0xFFF00000) >> 20);
if(index >= (int32_t)(nValues - 1))
{
return (pYData[nValues - 1]);
}
else if(index < 0)
{
return (pYData[0]);
}
else
{
/* 20 bits for the fractional part */
/* fract is in 12.20 format */
fract = (x & 0x000FFFFF);
/* Read two nearest output values from the index */
y0 = pYData[index];
y1 = pYData[index + 1];
/* Calculation of y0 * (1-fract) and y is in 13.35 format */
y = ((q63_t) y0 * (0xFFFFF - fract));
/* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
y += ((q63_t) y1 * (fract));
/* convert y to 1.15 format */
return (q15_t) (y >> 20);
}
}
/**
*
* @brief Process function for the Q7 Linear Interpolation Function.
* @param[in] pYData pointer to Q7 Linear Interpolation table
* @param[in] x input sample to process
* @param[in] nValues number of table values
* @return y processed output sample.
*
* \par
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
* This function can support maximum of table size 2^12.
*/
static __INLINE q7_t arm_linear_interp_q7(
q7_t * pYData,
q31_t x,
uint32_t nValues)
{
q31_t y; /* output */
q7_t y0, y1; /* Nearest output values */
q31_t fract; /* fractional part */
uint32_t index; /* Index to read nearest output values */
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
if (x < 0)
{
return (pYData[0]);
}
index = (x >> 20) & 0xfff;
if(index >= (nValues - 1))
{
return (pYData[nValues - 1]);
}
else
{
/* 20 bits for the fractional part */
/* fract is in 12.20 format */
fract = (x & 0x000FFFFF);
/* Read two nearest output values from the index and are in 1.7(q7) format */
y0 = pYData[index];
y1 = pYData[index + 1];
/* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
y = ((y0 * (0xFFFFF - fract)));
/* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
y += (y1 * fract);
/* convert y to 1.7(q7) format */
return (q7_t) (y >> 20);
}
}
/**
* @} end of LinearInterpolate group
*/
/**
* @brief Fast approximation to the trigonometric sine function for floating-point data.
* @param[in] x input value in radians.
* @return sin(x).
*/
float32_t arm_sin_f32(
float32_t x);
/**
* @brief Fast approximation to the trigonometric sine function for Q31 data.
* @param[in] x Scaled input value in radians.
* @return sin(x).
*/
q31_t arm_sin_q31(
q31_t x);
/**
* @brief Fast approximation to the trigonometric sine function for Q15 data.
* @param[in] x Scaled input value in radians.
* @return sin(x).
*/
q15_t arm_sin_q15(
q15_t x);
/**
* @brief Fast approximation to the trigonometric cosine function for floating-point data.
* @param[in] x input value in radians.
* @return cos(x).
*/
float32_t arm_cos_f32(
float32_t x);
/**
* @brief Fast approximation to the trigonometric cosine function for Q31 data.
* @param[in] x Scaled input value in radians.
* @return cos(x).
*/
q31_t arm_cos_q31(
q31_t x);
/**
* @brief Fast approximation to the trigonometric cosine function for Q15 data.
* @param[in] x Scaled input value in radians.
* @return cos(x).
*/
q15_t arm_cos_q15(
q15_t x);
/**
* @ingroup groupFastMath
*/
/**
* @defgroup SQRT Square Root
*
* Computes the square root of a number.
* There are separate functions for Q15, Q31, and floating-point data types.
* The square root function is computed using the Newton-Raphson algorithm.
* This is an iterative algorithm of the form:
* <pre>
* x1 = x0 - f(x0)/f'(x0)
* </pre>
* where <code>x1</code> is the current estimate,
* <code>x0</code> is the previous estimate, and
* <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
* For the square root function, the algorithm reduces to:
* <pre>
* x0 = in/2 [initial guess]
* x1 = 1/2 * ( x0 + in / x0) [each iteration]
* </pre>
*/
/**
* @addtogroup SQRT
* @{
*/
/**
* @brief Floating-point square root function.
* @param[in] in input value.
* @param[out] pOut square root of input value.
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
* <code>in</code> is negative value and returns zero output for negative values.
*/
static __INLINE arm_status arm_sqrt_f32(
float32_t in,
float32_t * pOut)
{
if(in >= 0.0f)
{
#if (__FPU_USED == 1) && defined ( __CC_ARM )
*pOut = __sqrtf(in);
#elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
*pOut = __builtin_sqrtf(in);
#elif (__FPU_USED == 1) && defined(__GNUC__)
*pOut = __builtin_sqrtf(in);
#elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)
__ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
#else
*pOut = sqrtf(in);
#endif
return (ARM_MATH_SUCCESS);
}
else
{
*pOut = 0.0f;
return (ARM_MATH_ARGUMENT_ERROR);
}
}
/**
* @brief Q31 square root function.
* @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
* @param[out] pOut square root of input value.
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
* <code>in</code> is negative value and returns zero output for negative values.
*/
arm_status arm_sqrt_q31(
q31_t in,
q31_t * pOut);
/**
* @brief Q15 square root function.
* @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
* @param[out] pOut square root of input value.
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
* <code>in</code> is negative value and returns zero output for negative values.
*/
arm_status arm_sqrt_q15(
q15_t in,
q15_t * pOut);
/**
* @} end of SQRT group
*/
/**
* @brief floating-point Circular write function.
*/
static __INLINE void arm_circularWrite_f32(
int32_t * circBuffer,
int32_t L,
uint16_t * writeOffset,
int32_t bufferInc,
const int32_t * src,
int32_t srcInc,
uint32_t blockSize)
{
uint32_t i = 0u;
int32_t wOffset;
/* Copy the value of Index pointer that points
* to the current location where the input samples to be copied */
wOffset = *writeOffset;
/* Loop over the blockSize */
i = blockSize;
while(i > 0u)
{
/* copy the input sample to the circular buffer */
circBuffer[wOffset] = *src;
/* Update the input pointer */
src += srcInc;
/* Circularly update wOffset. Watch out for positive and negative value */
wOffset += bufferInc;
if(wOffset >= L)
wOffset -= L;
/* Decrement the loop counter */
i--;
}
/* Update the index pointer */
*writeOffset = (uint16_t)wOffset;
}
/**
* @brief floating-point Circular Read function.
*/
static __INLINE void arm_circularRead_f32(
int32_t * circBuffer,
int32_t L,
int32_t * readOffset,
int32_t bufferInc,
int32_t * dst,
int32_t * dst_base,
int32_t dst_length,
int32_t dstInc,
uint32_t blockSize)
{
uint32_t i = 0u;
int32_t rOffset, dst_end;
/* Copy the value of Index pointer that points
* to the current location from where the input samples to be read */
rOffset = *readOffset;
dst_end = (int32_t) (dst_base + dst_length);
/* Loop over the blockSize */
i = blockSize;
while(i > 0u)
{
/* copy the sample from the circular buffer to the destination buffer */
*dst = circBuffer[rOffset];
/* Update the input pointer */
dst += dstInc;
if(dst == (int32_t *) dst_end)
{
dst = dst_base;
}
/* Circularly update rOffset. Watch out for positive and negative value */
rOffset += bufferInc;
if(rOffset >= L)
{
rOffset -= L;
}
/* Decrement the loop counter */
i--;
}
/* Update the index pointer */
*readOffset = rOffset;
}
/**
* @brief Q15 Circular write function.
*/
static __INLINE void arm_circularWrite_q15(
q15_t * circBuffer,
int32_t L,
uint16_t * writeOffset,
int32_t bufferInc,
const q15_t * src,
int32_t srcInc,
uint32_t blockSize)
{
uint32_t i = 0u;
int32_t wOffset;
/* Copy the value of Index pointer that points
* to the current location where the input samples to be copied */
wOffset = *writeOffset;
/* Loop over the blockSize */
i = blockSize;
while(i > 0u)
{
/* copy the input sample to the circular buffer */
circBuffer[wOffset] = *src;
/* Update the input pointer */
src += srcInc;
/* Circularly update wOffset. Watch out for positive and negative value */
wOffset += bufferInc;
if(wOffset >= L)
wOffset -= L;
/* Decrement the loop counter */
i--;
}
/* Update the index pointer */
*writeOffset = (uint16_t)wOffset;
}
/**
* @brief Q15 Circular Read function.
*/
static __INLINE void arm_circularRead_q15(
q15_t * circBuffer,
int32_t L,
int32_t * readOffset,
int32_t bufferInc,
q15_t * dst,
q15_t * dst_base,
int32_t dst_length,
int32_t dstInc,
uint32_t blockSize)
{
uint32_t i = 0;
int32_t rOffset, dst_end;
/* Copy the value of Index pointer that points
* to the current location from where the input samples to be read */
rOffset = *readOffset;
dst_end = (int32_t) (dst_base + dst_length);
/* Loop over the blockSize */
i = blockSize;
while(i > 0u)
{
/* copy the sample from the circular buffer to the destination buffer */
*dst = circBuffer[rOffset];
/* Update the input pointer */
dst += dstInc;
if(dst == (q15_t *) dst_end)
{
dst = dst_base;
}
/* Circularly update wOffset. Watch out for positive and negative value */
rOffset += bufferInc;
if(rOffset >= L)
{
rOffset -= L;
}
/* Decrement the loop counter */
i--;
}
/* Update the index pointer */
*readOffset = rOffset;
}
/**
* @brief Q7 Circular write function.
*/
static __INLINE void arm_circularWrite_q7(
q7_t * circBuffer,
int32_t L,
uint16_t * writeOffset,
int32_t bufferInc,
const q7_t * src,
int32_t srcInc,
uint32_t blockSize)
{
uint32_t i = 0u;
int32_t wOffset;
/* Copy the value of Index pointer that points
* to the current location where the input samples to be copied */
wOffset = *writeOffset;
/* Loop over the blockSize */
i = blockSize;
while(i > 0u)
{
/* copy the input sample to the circular buffer */
circBuffer[wOffset] = *src;
/* Update the input pointer */
src += srcInc;
/* Circularly update wOffset. Watch out for positive and negative value */
wOffset += bufferInc;
if(wOffset >= L)
wOffset -= L;
/* Decrement the loop counter */
i--;
}
/* Update the index pointer */
*writeOffset = (uint16_t)wOffset;
}
/**
* @brief Q7 Circular Read function.
*/
static __INLINE void arm_circularRead_q7(
q7_t * circBuffer,
int32_t L,
int32_t * readOffset,
int32_t bufferInc,
q7_t * dst,
q7_t * dst_base,
int32_t dst_length,
int32_t dstInc,
uint32_t blockSize)
{
uint32_t i = 0;
int32_t rOffset, dst_end;
/* Copy the value of Index pointer that points
* to the current location from where the input samples to be read */
rOffset = *readOffset;
dst_end = (int32_t) (dst_base + dst_length);
/* Loop over the blockSize */
i = blockSize;
while(i > 0u)
{
/* copy the sample from the circular buffer to the destination buffer */
*dst = circBuffer[rOffset];
/* Update the input pointer */
dst += dstInc;
if(dst == (q7_t *) dst_end)
{
dst = dst_base;
}
/* Circularly update rOffset. Watch out for positive and negative value */
rOffset += bufferInc;
if(rOffset >= L)
{
rOffset -= L;
}
/* Decrement the loop counter */
i--;
}
/* Update the index pointer */
*readOffset = rOffset;
}
/**
* @brief Sum of the squares of the elements of a Q31 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_power_q31(
q31_t * pSrc,
uint32_t blockSize,
q63_t * pResult);
/**
* @brief Sum of the squares of the elements of a floating-point vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_power_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult);
/**
* @brief Sum of the squares of the elements of a Q15 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_power_q15(
q15_t * pSrc,
uint32_t blockSize,
q63_t * pResult);
/**
* @brief Sum of the squares of the elements of a Q7 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_power_q7(
q7_t * pSrc,
uint32_t blockSize,
q31_t * pResult);
/**
* @brief Mean value of a Q7 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_mean_q7(
q7_t * pSrc,
uint32_t blockSize,
q7_t * pResult);
/**
* @brief Mean value of a Q15 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_mean_q15(
q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult);
/**
* @brief Mean value of a Q31 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_mean_q31(
q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult);
/**
* @brief Mean value of a floating-point vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_mean_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult);
/**
* @brief Variance of the elements of a floating-point vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_var_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult);
/**
* @brief Variance of the elements of a Q31 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_var_q31(
q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult);
/**
* @brief Variance of the elements of a Q15 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_var_q15(
q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult);
/**
* @brief Root Mean Square of the elements of a floating-point vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_rms_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult);
/**
* @brief Root Mean Square of the elements of a Q31 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_rms_q31(
q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult);
/**
* @brief Root Mean Square of the elements of a Q15 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_rms_q15(
q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult);
/**
* @brief Standard deviation of the elements of a floating-point vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_std_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult);
/**
* @brief Standard deviation of the elements of a Q31 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_std_q31(
q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult);
/**
* @brief Standard deviation of the elements of a Q15 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void arm_std_q15(
q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult);
/**
* @brief Floating-point complex magnitude
* @param[in] pSrc points to the complex input vector
* @param[out] pDst points to the real output vector
* @param[in] numSamples number of complex samples in the input vector
*/
void arm_cmplx_mag_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples);
/**
* @brief Q31 complex magnitude
* @param[in] pSrc points to the complex input vector
* @param[out] pDst points to the real output vector
* @param[in] numSamples number of complex samples in the input vector
*/
void arm_cmplx_mag_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples);
/**
* @brief Q15 complex magnitude
* @param[in] pSrc points to the complex input vector
* @param[out] pDst points to the real output vector
* @param[in] numSamples number of complex samples in the input vector
*/
void arm_cmplx_mag_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples);
/**
* @brief Q15 complex dot product
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[in] numSamples number of complex samples in each vector
* @param[out] realResult real part of the result returned here
* @param[out] imagResult imaginary part of the result returned here
*/
void arm_cmplx_dot_prod_q15(
q15_t * pSrcA,
q15_t * pSrcB,
uint32_t numSamples,
q31_t * realResult,
q31_t * imagResult);
/**
* @brief Q31 complex dot product
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[in] numSamples number of complex samples in each vector
* @param[out] realResult real part of the result returned here
* @param[out] imagResult imaginary part of the result returned here
*/
void arm_cmplx_dot_prod_q31(
q31_t * pSrcA,
q31_t * pSrcB,
uint32_t numSamples,
q63_t * realResult,
q63_t * imagResult);
/**
* @brief Floating-point complex dot product
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[in] numSamples number of complex samples in each vector
* @param[out] realResult real part of the result returned here
* @param[out] imagResult imaginary part of the result returned here
*/
void arm_cmplx_dot_prod_f32(
float32_t * pSrcA,
float32_t * pSrcB,
uint32_t numSamples,
float32_t * realResult,
float32_t * imagResult);
/**
* @brief Q15 complex-by-real multiplication
* @param[in] pSrcCmplx points to the complex input vector
* @param[in] pSrcReal points to the real input vector
* @param[out] pCmplxDst points to the complex output vector
* @param[in] numSamples number of samples in each vector
*/
void arm_cmplx_mult_real_q15(
q15_t * pSrcCmplx,
q15_t * pSrcReal,
q15_t * pCmplxDst,
uint32_t numSamples);
/**
* @brief Q31 complex-by-real multiplication
* @param[in] pSrcCmplx points to the complex input vector
* @param[in] pSrcReal points to the real input vector
* @param[out] pCmplxDst points to the complex output vector
* @param[in] numSamples number of samples in each vector
*/
void arm_cmplx_mult_real_q31(
q31_t * pSrcCmplx,
q31_t * pSrcReal,
q31_t * pCmplxDst,
uint32_t numSamples);
/**
* @brief Floating-point complex-by-real multiplication
* @param[in] pSrcCmplx points to the complex input vector
* @param[in] pSrcReal points to the real input vector
* @param[out] pCmplxDst points to the complex output vector
* @param[in] numSamples number of samples in each vector
*/
void arm_cmplx_mult_real_f32(
float32_t * pSrcCmplx,
float32_t * pSrcReal,
float32_t * pCmplxDst,
uint32_t numSamples);
/**
* @brief Minimum value of a Q7 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] result is output pointer
* @param[in] index is the array index of the minimum value in the input buffer.
*/
void arm_min_q7(
q7_t * pSrc,
uint32_t blockSize,
q7_t * result,
uint32_t * index);
/**
* @brief Minimum value of a Q15 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output pointer
* @param[in] pIndex is the array index of the minimum value in the input buffer.
*/
void arm_min_q15(
q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult,
uint32_t * pIndex);
/**
* @brief Minimum value of a Q31 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output pointer
* @param[out] pIndex is the array index of the minimum value in the input buffer.
*/
void arm_min_q31(
q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult,
uint32_t * pIndex);
/**
* @brief Minimum value of a floating-point vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output pointer
* @param[out] pIndex is the array index of the minimum value in the input buffer.
*/
void arm_min_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult,
uint32_t * pIndex);
/**
* @brief Maximum value of a Q7 vector.
* @param[in] pSrc points to the input buffer
* @param[in] blockSize length of the input vector
* @param[out] pResult maximum value returned here
* @param[out] pIndex index of maximum value returned here
*/
void arm_max_q7(
q7_t * pSrc,
uint32_t blockSize,
q7_t * pResult,
uint32_t * pIndex);
/**
* @brief Maximum value of a Q15 vector.
* @param[in] pSrc points to the input buffer
* @param[in] blockSize length of the input vector
* @param[out] pResult maximum value returned here
* @param[out] pIndex index of maximum value returned here
*/
void arm_max_q15(
q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult,
uint32_t * pIndex);
/**
* @brief Maximum value of a Q31 vector.
* @param[in] pSrc points to the input buffer
* @param[in] blockSize length of the input vector
* @param[out] pResult maximum value returned here
* @param[out] pIndex index of maximum value returned here
*/
void arm_max_q31(
q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult,
uint32_t * pIndex);
/**
* @brief Maximum value of a floating-point vector.
* @param[in] pSrc points to the input buffer
* @param[in] blockSize length of the input vector
* @param[out] pResult maximum value returned here
* @param[out] pIndex index of maximum value returned here
*/
void arm_max_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult,
uint32_t * pIndex);
/**
* @brief Q15 complex-by-complex multiplication
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
*/
void arm_cmplx_mult_cmplx_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t numSamples);
/**
* @brief Q31 complex-by-complex multiplication
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
*/
void arm_cmplx_mult_cmplx_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t numSamples);
/**
* @brief Floating-point complex-by-complex multiplication
* @param[in] pSrcA points to the first input vector
* @param[in] pSrcB points to the second input vector
* @param[out] pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
*/
void arm_cmplx_mult_cmplx_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t numSamples);
/**
* @brief Converts the elements of the floating-point vector to Q31 vector.
* @param[in] pSrc points to the floating-point input vector
* @param[out] pDst points to the Q31 output vector
* @param[in] blockSize length of the input vector
*/
void arm_float_to_q31(
float32_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Converts the elements of the floating-point vector to Q15 vector.
* @param[in] pSrc points to the floating-point input vector
* @param[out] pDst points to the Q15 output vector
* @param[in] blockSize length of the input vector
*/
void arm_float_to_q15(
float32_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Converts the elements of the floating-point vector to Q7 vector.
* @param[in] pSrc points to the floating-point input vector
* @param[out] pDst points to the Q7 output vector
* @param[in] blockSize length of the input vector
*/
void arm_float_to_q7(
float32_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Converts the elements of the Q31 vector to Q15 vector.
* @param[in] pSrc is input pointer
* @param[out] pDst is output pointer
* @param[in] blockSize is the number of samples to process
*/
void arm_q31_to_q15(
q31_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Converts the elements of the Q31 vector to Q7 vector.
* @param[in] pSrc is input pointer
* @param[out] pDst is output pointer
* @param[in] blockSize is the number of samples to process
*/
void arm_q31_to_q7(
q31_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Converts the elements of the Q15 vector to floating-point vector.
* @param[in] pSrc is input pointer
* @param[out] pDst is output pointer
* @param[in] blockSize is the number of samples to process
*/
void arm_q15_to_float(
q15_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Converts the elements of the Q15 vector to Q31 vector.
* @param[in] pSrc is input pointer
* @param[out] pDst is output pointer
* @param[in] blockSize is the number of samples to process
*/
void arm_q15_to_q31(
q15_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Converts the elements of the Q15 vector to Q7 vector.
* @param[in] pSrc is input pointer
* @param[out] pDst is output pointer
* @param[in] blockSize is the number of samples to process
*/
void arm_q15_to_q7(
q15_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
/**
* @ingroup groupInterpolation
*/
/**
* @defgroup BilinearInterpolate Bilinear Interpolation
*
* Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
* The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
* determines values between the grid points.
* Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
* Bilinear interpolation is often used in image processing to rescale images.
* The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
*
* <b>Algorithm</b>
* \par
* The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
* For floating-point, the instance structure is defined as:
* <pre>
* typedef struct
* {
* uint16_t numRows;
* uint16_t numCols;
* float32_t *pData;
* } arm_bilinear_interp_instance_f32;
* </pre>
*
* \par
* where <code>numRows</code> specifies the number of rows in the table;
* <code>numCols</code> specifies the number of columns in the table;
* and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
* The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
* That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
*
* \par
* Let <code>(x, y)</code> specify the desired interpolation point. Then define:
* <pre>
* XF = floor(x)
* YF = floor(y)
* </pre>
* \par
* The interpolated output point is computed as:
* <pre>
* f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
* + f(XF+1, YF) * (x-XF)*(1-(y-YF))
* + f(XF, YF+1) * (1-(x-XF))*(y-YF)
* + f(XF+1, YF+1) * (x-XF)*(y-YF)
* </pre>
* Note that the coordinates (x, y) contain integer and fractional components.
* The integer components specify which portion of the table to use while the
* fractional components control the interpolation processor.
*
* \par
* if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
*/
/**
* @addtogroup BilinearInterpolate
* @{
*/
/**
*
* @brief Floating-point bilinear interpolation.
* @param[in,out] S points to an instance of the interpolation structure.
* @param[in] X interpolation coordinate.
* @param[in] Y interpolation coordinate.
* @return out interpolated value.
*/
static __INLINE float32_t arm_bilinear_interp_f32(
const arm_bilinear_interp_instance_f32 * S,
float32_t X,
float32_t Y)
{
float32_t out;
float32_t f00, f01, f10, f11;
float32_t *pData = S->pData;
int32_t xIndex, yIndex, index;
float32_t xdiff, ydiff;
float32_t b1, b2, b3, b4;
xIndex = (int32_t) X;
yIndex = (int32_t) Y;
/* Care taken for table outside boundary */
/* Returns zero output when values are outside table boundary */
if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1))
{
return (0);
}
/* Calculation of index for two nearest points in X-direction */
index = (xIndex - 1) + (yIndex - 1) * S->numCols;
/* Read two nearest points in X-direction */
f00 = pData[index];
f01 = pData[index + 1];
/* Calculation of index for two nearest points in Y-direction */
index = (xIndex - 1) + (yIndex) * S->numCols;
/* Read two nearest points in Y-direction */
f10 = pData[index];
f11 = pData[index + 1];
/* Calculation of intermediate values */
b1 = f00;
b2 = f01 - f00;
b3 = f10 - f00;
b4 = f00 - f01 - f10 + f11;
/* Calculation of fractional part in X */
xdiff = X - xIndex;
/* Calculation of fractional part in Y */
ydiff = Y - yIndex;
/* Calculation of bi-linear interpolated output */
out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
/* return to application */
return (out);
}
/**
*
* @brief Q31 bilinear interpolation.
* @param[in,out] S points to an instance of the interpolation structure.
* @param[in] X interpolation coordinate in 12.20 format.
* @param[in] Y interpolation coordinate in 12.20 format.
* @return out interpolated value.
*/
static __INLINE q31_t arm_bilinear_interp_q31(
arm_bilinear_interp_instance_q31 * S,
q31_t X,
q31_t Y)
{
q31_t out; /* Temporary output */
q31_t acc = 0; /* output */
q31_t xfract, yfract; /* X, Y fractional parts */
q31_t x1, x2, y1, y2; /* Nearest output values */
int32_t rI, cI; /* Row and column indices */
q31_t *pYData = S->pData; /* pointer to output table values */
uint32_t nCols = S->numCols; /* num of rows */
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
rI = ((X & (q31_t)0xFFF00000) >> 20);
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
cI = ((Y & (q31_t)0xFFF00000) >> 20);
/* Care taken for table outside boundary */
/* Returns zero output when values are outside table boundary */
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
{
return (0);
}
/* 20 bits for the fractional part */
/* shift left xfract by 11 to keep 1.31 format */
xfract = (X & 0x000FFFFF) << 11u;
/* Read two nearest output values from the index */
x1 = pYData[(rI) + (int32_t)nCols * (cI) ];
x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1];
/* 20 bits for the fractional part */
/* shift left yfract by 11 to keep 1.31 format */
yfract = (Y & 0x000FFFFF) << 11u;
/* Read two nearest output values from the index */
y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ];
y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1];
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
/* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
/* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
/* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
/* Convert acc to 1.31(q31) format */
return ((q31_t)(acc << 2));
}
/**
* @brief Q15 bilinear interpolation.
* @param[in,out] S points to an instance of the interpolation structure.
* @param[in] X interpolation coordinate in 12.20 format.
* @param[in] Y interpolation coordinate in 12.20 format.
* @return out interpolated value.
*/
static __INLINE q15_t arm_bilinear_interp_q15(
arm_bilinear_interp_instance_q15 * S,
q31_t X,
q31_t Y)
{
q63_t acc = 0; /* output */
q31_t out; /* Temporary output */
q15_t x1, x2, y1, y2; /* Nearest output values */
q31_t xfract, yfract; /* X, Y fractional parts */
int32_t rI, cI; /* Row and column indices */
q15_t *pYData = S->pData; /* pointer to output table values */
uint32_t nCols = S->numCols; /* num of rows */
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
rI = ((X & (q31_t)0xFFF00000) >> 20);
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
cI = ((Y & (q31_t)0xFFF00000) >> 20);
/* Care taken for table outside boundary */
/* Returns zero output when values are outside table boundary */
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
{
return (0);
}
/* 20 bits for the fractional part */
/* xfract should be in 12.20 format */
xfract = (X & 0x000FFFFF);
/* Read two nearest output values from the index */
x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
/* 20 bits for the fractional part */
/* yfract should be in 12.20 format */
yfract = (Y & 0x000FFFFF);
/* Read two nearest output values from the index */
y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
/* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
/* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
acc = ((q63_t) out * (0xFFFFF - yfract));
/* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
acc += ((q63_t) out * (xfract));
/* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
acc += ((q63_t) out * (yfract));
/* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
acc += ((q63_t) out * (yfract));
/* acc is in 13.51 format and down shift acc by 36 times */
/* Convert out to 1.15 format */
return ((q15_t)(acc >> 36));
}
/**
* @brief Q7 bilinear interpolation.
* @param[in,out] S points to an instance of the interpolation structure.
* @param[in] X interpolation coordinate in 12.20 format.
* @param[in] Y interpolation coordinate in 12.20 format.
* @return out interpolated value.
*/
static __INLINE q7_t arm_bilinear_interp_q7(
arm_bilinear_interp_instance_q7 * S,
q31_t X,
q31_t Y)
{
q63_t acc = 0; /* output */
q31_t out; /* Temporary output */
q31_t xfract, yfract; /* X, Y fractional parts */
q7_t x1, x2, y1, y2; /* Nearest output values */
int32_t rI, cI; /* Row and column indices */
q7_t *pYData = S->pData; /* pointer to output table values */
uint32_t nCols = S->numCols; /* num of rows */
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
rI = ((X & (q31_t)0xFFF00000) >> 20);
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
cI = ((Y & (q31_t)0xFFF00000) >> 20);
/* Care taken for table outside boundary */
/* Returns zero output when values are outside table boundary */
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
{
return (0);
}
/* 20 bits for the fractional part */
/* xfract should be in 12.20 format */
xfract = (X & (q31_t)0x000FFFFF);
/* Read two nearest output values from the index */
x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
/* 20 bits for the fractional part */
/* yfract should be in 12.20 format */
yfract = (Y & (q31_t)0x000FFFFF);
/* Read two nearest output values from the index */
y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
out = ((x1 * (0xFFFFF - xfract)));
acc = (((q63_t) out * (0xFFFFF - yfract)));
/* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
out = ((x2 * (0xFFFFF - yfract)));
acc += (((q63_t) out * (xfract)));
/* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
out = ((y1 * (0xFFFFF - xfract)));
acc += (((q63_t) out * (yfract)));
/* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
out = ((y2 * (yfract)));
acc += (((q63_t) out * (xfract)));
/* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
return ((q7_t)(acc >> 40));
}
/**
* @} end of BilinearInterpolate group
*/
/* SMMLAR */
#define multAcc_32x32_keep32_R(a, x, y) \
a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
/* SMMLSR */
#define multSub_32x32_keep32_R(a, x, y) \
a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
/* SMMULR */
#define mult_32x32_keep32_R(a, x, y) \
a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
/* SMMLA */
#define multAcc_32x32_keep32(a, x, y) \
a += (q31_t) (((q63_t) x * y) >> 32)
/* SMMLS */
#define multSub_32x32_keep32(a, x, y) \
a -= (q31_t) (((q63_t) x * y) >> 32)
/* SMMUL */
#define mult_32x32_keep32(a, x, y) \
a = (q31_t) (((q63_t) x * y ) >> 32)
#if defined ( __CC_ARM )
/* Enter low optimization region - place directly above function definition */
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
#define LOW_OPTIMIZATION_ENTER \
_Pragma ("push") \
_Pragma ("O1")
#else
#define LOW_OPTIMIZATION_ENTER
#endif
/* Exit low optimization region - place directly after end of function definition */
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
#define LOW_OPTIMIZATION_EXIT \
_Pragma ("pop")
#else
#define LOW_OPTIMIZATION_EXIT
#endif
/* Enter low optimization region - place directly above function definition */
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
/* Exit low optimization region - place directly after end of function definition */
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#define LOW_OPTIMIZATION_ENTER
#define LOW_OPTIMIZATION_EXIT
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#elif defined(__GNUC__)
#define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
#define LOW_OPTIMIZATION_EXIT
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#elif defined(__ICCARM__)
/* Enter low optimization region - place directly above function definition */
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
#define LOW_OPTIMIZATION_ENTER \
_Pragma ("optimize=low")
#else
#define LOW_OPTIMIZATION_ENTER
#endif
/* Exit low optimization region - place directly after end of function definition */
#define LOW_OPTIMIZATION_EXIT
/* Enter low optimization region - place directly above function definition */
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
_Pragma ("optimize=low")
#else
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
#endif
/* Exit low optimization region - place directly after end of function definition */
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#elif defined(__CSMC__)
#define LOW_OPTIMIZATION_ENTER
#define LOW_OPTIMIZATION_EXIT
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#elif defined(__TASKING__)
#define LOW_OPTIMIZATION_ENTER
#define LOW_OPTIMIZATION_EXIT
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#endif
#ifdef __cplusplus
}
#endif
#if defined ( __GNUC__ )
#pragma GCC diagnostic pop
#endif
#endif /* _ARM_MATH_H */
/**
*
* End of file.
*/