/* ---------------------------------------------------------------------- * Copyright (C) 2010-2014 ARM Limited. All rights reserved. * * $Date: 19. March 2015 * $Revision: V.1.4.5 * * Project: CMSIS DSP Library * Title: arm_scale_q15.c * * Description: Multiplies a Q15 vector by a scalar. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupMath */ /** * @addtogroup scale * @{ */ /** * @brief Multiplies a Q15 vector by a scalar. * @param[in] *pSrc points to the input vector * @param[in] scaleFract fractional portion of the scale value * @param[in] shift number of bits to shift the result by * @param[out] *pDst points to the output vector * @param[in] blockSize number of samples in the vector * @return none. * * <b>Scaling and Overflow Behavior:</b> * \par * The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.15 format. * These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format. */ void arm_scale_q15( q15_t * pSrc, q15_t scaleFract, int8_t shift, q15_t * pDst, uint32_t blockSize) { int8_t kShift = 15 - shift; /* shift to apply after scaling */ uint32_t blkCnt; /* loop counter */ #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ q15_t in1, in2, in3, in4; q31_t inA1, inA2; /* Temporary variables */ q31_t out1, out2, out3, out4; /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* Reading 2 inputs from memory */ inA1 = *__SIMD32(pSrc)++; inA2 = *__SIMD32(pSrc)++; /* C = A * scale */ /* Scale the inputs and then store the 2 results in the destination buffer * in single cycle by packing the outputs */ out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract); out2 = (q31_t) ((q15_t) inA1 * scaleFract); out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract); out4 = (q31_t) ((q15_t) inA2 * scaleFract); /* apply shifting */ out1 = out1 >> kShift; out2 = out2 >> kShift; out3 = out3 >> kShift; out4 = out4 >> kShift; /* saturate the output */ in1 = (q15_t) (__SSAT(out1, 16)); in2 = (q15_t) (__SSAT(out2, 16)); in3 = (q15_t) (__SSAT(out3, 16)); in4 = (q15_t) (__SSAT(out4, 16)); /* store the result to destination */ *__SIMD32(pDst)++ = __PKHBT(in2, in1, 16); *__SIMD32(pDst)++ = __PKHBT(in4, in3, 16); /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* C = A * scale */ /* Scale the input and then store the result in the destination buffer. */ *pDst++ = (q15_t) (__SSAT(((*pSrc++) * scaleFract) >> kShift, 16)); /* Decrement the loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = blockSize; while(blkCnt > 0u) { /* C = A * scale */ /* Scale the input and then store the result in the destination buffer. */ *pDst++ = (q15_t) (__SSAT(((q31_t) * pSrc++ * scaleFract) >> kShift, 16)); /* Decrement the loop counter */ blkCnt--; } #endif /* #ifndef ARM_MATH_CM0_FAMILY */ } /** * @} end of scale group */