hoverboard-firmware-hack-se.../Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_i2c.c

5576 lines
167 KiB
C
Raw Permalink Normal View History

2017-12-30 01:55:59 +00:00
/**
******************************************************************************
* @file stm32f1xx_hal_i2c.c
* @author MCD Application Team
* @version V1.1.1
* @date 12-May-2017
* @brief I2C HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Inter Integrated Circuit (I2C) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral State, Mode and Error functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The I2C HAL driver can be used as follows:
(#) Declare a I2C_HandleTypeDef handle structure, for example:
I2C_HandleTypeDef hi2c;
(#)Initialize the I2C low level resources by implementing the HAL_I2C_MspInit() API:
(##) Enable the I2Cx interface clock
(##) I2C pins configuration
(+++) Enable the clock for the I2C GPIOs
(+++) Configure I2C pins as alternate function open-drain
(##) NVIC configuration if you need to use interrupt process
(+++) Configure the I2Cx interrupt priority
(+++) Enable the NVIC I2C IRQ Channel
(##) DMA Configuration if you need to use DMA process
(+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive channel
(+++) Enable the DMAx interface clock using
(+++) Configure the DMA handle parameters
(+++) Configure the DMA Tx or Rx channel
(+++) Associate the initialized DMA handle to the hi2c DMA Tx or Rx handle
(+++) Configure the priority and enable the NVIC for the transfer complete interrupt on
the DMA Tx or Rx channel
(#) Configure the Communication Speed, Duty cycle, Addressing mode, Own Address1,
Dual Addressing mode, Own Address2, General call and Nostretch mode in the hi2c Init structure.
(#) Initialize the I2C registers by calling the HAL_I2C_Init(), configures also the low level Hardware
(GPIO, CLOCK, NVIC...etc) by calling the customized HAL_I2C_MspInit(&hi2c) API.
(#) To check if target device is ready for communication, use the function HAL_I2C_IsDeviceReady()
(#) For I2C IO and IO MEM operations, three operation modes are available within this driver :
*** Polling mode IO operation ***
=================================
[..]
(+) Transmit in master mode an amount of data in blocking mode using HAL_I2C_Master_Transmit()
(+) Receive in master mode an amount of data in blocking mode using HAL_I2C_Master_Receive()
(+) Transmit in slave mode an amount of data in blocking mode using HAL_I2C_Slave_Transmit()
(+) Receive in slave mode an amount of data in blocking mode using HAL_I2C_Slave_Receive()
*** Polling mode IO MEM operation ***
=====================================
[..]
(+) Write an amount of data in blocking mode to a specific memory address using HAL_I2C_Mem_Write()
(+) Read an amount of data in blocking mode from a specific memory address using HAL_I2C_Mem_Read()
*** Interrupt mode IO operation ***
===================================
[..]
(+) Transmit in master mode an amount of data in non blocking mode using HAL_I2C_Master_Transmit_IT()
(+) At transmission end of transfer HAL_I2C_MasterTxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2C_MasterTxCpltCallback
(+) Receive in master mode an amount of data in non blocking mode using HAL_I2C_Master_Receive_IT()
(+) At reception end of transfer HAL_I2C_MasterRxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2C_MasterRxCpltCallback
(+) Transmit in slave mode an amount of data in non blocking mode using HAL_I2C_Slave_Transmit_IT()
(+) At transmission end of transfer HAL_I2C_SlaveTxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback
(+) Receive in slave mode an amount of data in non blocking mode using HAL_I2C_Slave_Receive_IT()
(+) At reception end of transfer HAL_I2C_SlaveRxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback
(+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_I2C_ErrorCallback
(+) Abort a master I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT()
(+) End of abort process, HAL_I2C_AbortCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_I2C_AbortCpltCallback()
*** Interrupt mode IO sequential operation ***
==============================================
[..]
(@) These interfaces allow to manage a sequential transfer with a repeated start condition
when a direction change during transfer
[..]
(+) A specific option field manage the different steps of a sequential transfer
(+) Option field values are defined through @ref I2C_XFEROPTIONS and are listed below:
(++) I2C_FIRST_AND_LAST_FRAME: No sequential usage, functionnal is same as associated interfaces in no sequential mode
(++) I2C_FIRST_FRAME: Sequential usage, this option allow to manage a sequence with start condition, address
and data to transfer without a final stop condition
(++) I2C_NEXT_FRAME: Sequential usage, this option allow to manage a sequence with a restart condition, address
and with new data to transfer if the direction change or manage only the new data to transfer
if no direction change and without a final stop condition in both cases
(++) I2C_LAST_FRAME: Sequential usage, this option allow to manage a sequance with a restart condition, address
and with new data to transfer if the direction change or manage only the new data to transfer
if no direction change and with a final stop condition in both cases
(+) Differents sequential I2C interfaces are listed below:
(++) Sequential transmit in master I2C mode an amount of data in non-blocking mode using HAL_I2C_Master_Sequential_Transmit_IT()
(+++) At transmission end of current frame transfer, HAL_I2C_MasterTxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_I2C_MasterTxCpltCallback()
(++) Sequential receive in master I2C mode an amount of data in non-blocking mode using HAL_I2C_Master_Sequential_Receive_IT()
(+++) At reception end of current frame transfer, HAL_I2C_MasterRxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_I2C_MasterRxCpltCallback()
(++) Abort a master I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT()
(+++) End of abort process, HAL_I2C_AbortCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_I2C_AbortCpltCallback()
(++) Enable/disable the Address listen mode in slave I2C mode using HAL_I2C_EnableListen_IT() HAL_I2C_DisableListen_IT()
(+++) When address slave I2C match, HAL_I2C_AddrCallback() is executed and user can
add his own code to check the Address Match Code and the transmission direction request by master (Write/Read).
(+++) At Listen mode end HAL_I2C_ListenCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_I2C_ListenCpltCallback()
(++) Sequential transmit in slave I2C mode an amount of data in non-blocking mode using HAL_I2C_Slave_Sequential_Transmit_IT()
(+++) At transmission end of current frame transfer, HAL_I2C_SlaveTxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback()
(++) Sequential receive in slave I2C mode an amount of data in non-blocking mode using HAL_I2C_Slave_Sequential_Receive_IT()
(+++) At reception end of current frame transfer, HAL_I2C_SlaveRxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback()
(++) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_I2C_ErrorCallback()
*** Interrupt mode IO MEM operation ***
=======================================
[..]
(+) Write an amount of data in no-blocking mode with Interrupt to a specific memory address using
HAL_I2C_Mem_Write_IT()
(+) At MEM end of write transfer HAL_I2C_MemTxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2C_MemTxCpltCallback
(+) Read an amount of data in no-blocking mode with Interrupt from a specific memory address using
HAL_I2C_Mem_Read_IT()
(+) At MEM end of read transfer HAL_I2C_MemRxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2C_MemRxCpltCallback
(+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_I2C_ErrorCallback
*** DMA mode IO operation ***
==============================
[..]
(+) Transmit in master mode an amount of data in non blocking mode (DMA) using
HAL_I2C_Master_Transmit_DMA()
(+) At transmission end of transfer HAL_I2C_MasterTxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2C_MasterTxCpltCallback
(+) Receive in master mode an amount of data in non blocking mode (DMA) using
HAL_I2C_Master_Receive_DMA()
(+) At reception end of transfer HAL_I2C_MasterRxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2C_MasterRxCpltCallback
(+) Transmit in slave mode an amount of data in non blocking mode (DMA) using
HAL_I2C_Slave_Transmit_DMA()
(+) At transmission end of transfer HAL_I2C_SlaveTxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback
(+) Receive in slave mode an amount of data in non blocking mode (DMA) using
HAL_I2C_Slave_Receive_DMA()
(+) At reception end of transfer HAL_I2C_SlaveRxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback
(+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_I2C_ErrorCallback
(+) Abort a master I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT()
(+) End of abort process, HAL_I2C_AbortCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_I2C_AbortCpltCallback()
*** DMA mode IO MEM operation ***
=================================
[..]
(+) Write an amount of data in no-blocking mode with DMA to a specific memory address using
HAL_I2C_Mem_Write_DMA()
(+) At MEM end of write transfer HAL_I2C_MemTxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2C_MemTxCpltCallback
(+) Read an amount of data in no-blocking mode with DMA from a specific memory address using
HAL_I2C_Mem_Read_DMA()
(+) At MEM end of read transfer HAL_I2C_MemRxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2C_MemRxCpltCallback
(+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_I2C_ErrorCallback
*** I2C HAL driver macros list ***
==================================
[..]
Below the list of most used macros in I2C HAL driver.
(+) __HAL_I2C_ENABLE: Enable the I2C peripheral
(+) __HAL_I2C_DISABLE: Disable the I2C peripheral
(+) __HAL_I2C_GET_FLAG : Checks whether the specified I2C flag is set or not
(+) __HAL_I2C_CLEAR_FLAG : Clear the specified I2C pending flag
(+) __HAL_I2C_ENABLE_IT: Enable the specified I2C interrupt
(+) __HAL_I2C_DISABLE_IT: Disable the specified I2C interrupt
[..]
(@) You can refer to the I2C HAL driver header file for more useful macros
*** I2C Workarounds linked to Silicon Limitation ***
====================================================
[..]
Below the list of all silicon limitations implemented for HAL on STM32F1xx product.
(@) See ErrataSheet to know full silicon limitation list of your product.
(#) Workarounds Implemented inside I2C HAL Driver
(##) Wrong data read into data register (Polling and Interrupt mode)
(##) Start cannot be generated after a misplaced Stop
(##) Some software events must be managed before the current byte is being transferred:
Workaround: Use DMA in general, except when the Master is receiving a single byte.
For Interupt mode, I2C should have the highest priority in the application.
(##) Mismatch on the "Setup time for a repeated Start condition" timing parameter:
Workaround: Reduce the frequency down to 88 kHz or use the I2C Fast-mode if
supported by the slave.
(##) Data valid time (tVD;DAT) violated without the OVR flag being set:
Workaround: If the slave device allows it, use the clock stretching mechanism
by programming NoStretchMode = I2C_NOSTRETCH_DISABLE in HAL_I2C_Init.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup I2C I2C
* @brief I2C HAL module driver
* @{
*/
#ifdef HAL_I2C_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup I2C_Private_Define
* @{
*/
#define I2C_TIMEOUT_FLAG 35U /*!< Timeout 35 ms */
#define I2C_TIMEOUT_BUSY_FLAG 25U /*!< Timeout 25 ms */
#define I2C_NO_OPTION_FRAME 0xFFFF0000U /*!< XferOptions default value */
/* Private define for @ref PreviousState usage */
#define I2C_STATE_MSK ((uint32_t)((HAL_I2C_STATE_BUSY_TX | HAL_I2C_STATE_BUSY_RX) & (~(uint32_t)HAL_I2C_STATE_READY))) /*!< Mask State define, keep only RX and TX bits */
#define I2C_STATE_NONE ((uint32_t)(HAL_I2C_MODE_NONE)) /*!< Default Value */
#define I2C_STATE_MASTER_BUSY_TX ((uint32_t)((HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | HAL_I2C_MODE_MASTER)) /*!< Master Busy TX, combinaison of State LSB and Mode enum */
#define I2C_STATE_MASTER_BUSY_RX ((uint32_t)((HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | HAL_I2C_MODE_MASTER)) /*!< Master Busy RX, combinaison of State LSB and Mode enum */
#define I2C_STATE_SLAVE_BUSY_TX ((uint32_t)((HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | HAL_I2C_MODE_SLAVE)) /*!< Slave Busy TX, combinaison of State LSB and Mode enum */
#define I2C_STATE_SLAVE_BUSY_RX ((uint32_t)((HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | HAL_I2C_MODE_SLAVE)) /*!< Slave Busy RX, combinaison of State LSB and Mode enum */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup I2C_Private_Functions
* @{
*/
/* Private functions to handle DMA transfer */
static void I2C_DMAXferCplt(DMA_HandleTypeDef *hdma);
static void I2C_DMAError(DMA_HandleTypeDef *hdma);
static void I2C_DMAAbort(DMA_HandleTypeDef *hdma);
static void I2C_ITError(I2C_HandleTypeDef *hi2c);
static HAL_StatusTypeDef I2C_MasterRequestWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Timeout, uint32_t Tickstart);
static HAL_StatusTypeDef I2C_MasterRequestRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Timeout, uint32_t Tickstart);
static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart);
static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart);
static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t Tickstart);
static HAL_StatusTypeDef I2C_WaitOnMasterAddressFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, uint32_t Timeout, uint32_t Tickstart);
static HAL_StatusTypeDef I2C_WaitOnTXEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart);
static HAL_StatusTypeDef I2C_WaitOnBTFFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart);
static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart);
static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart);
static HAL_StatusTypeDef I2C_IsAcknowledgeFailed(I2C_HandleTypeDef *hi2c);
/* Private functions for I2C transfer IRQ handler */
static HAL_StatusTypeDef I2C_MasterTransmit_TXE(I2C_HandleTypeDef *hi2c);
static HAL_StatusTypeDef I2C_MasterTransmit_BTF(I2C_HandleTypeDef *hi2c);
static HAL_StatusTypeDef I2C_MasterReceive_RXNE(I2C_HandleTypeDef *hi2c);
static HAL_StatusTypeDef I2C_MasterReceive_BTF(I2C_HandleTypeDef *hi2c);
static HAL_StatusTypeDef I2C_Master_SB(I2C_HandleTypeDef *hi2c);
static HAL_StatusTypeDef I2C_Master_ADD10(I2C_HandleTypeDef *hi2c);
static HAL_StatusTypeDef I2C_Master_ADDR(I2C_HandleTypeDef *hi2c);
static HAL_StatusTypeDef I2C_SlaveTransmit_TXE(I2C_HandleTypeDef *hi2c);
static HAL_StatusTypeDef I2C_SlaveTransmit_BTF(I2C_HandleTypeDef *hi2c);
static HAL_StatusTypeDef I2C_SlaveReceive_RXNE(I2C_HandleTypeDef *hi2c);
static HAL_StatusTypeDef I2C_SlaveReceive_BTF(I2C_HandleTypeDef *hi2c);
static HAL_StatusTypeDef I2C_Slave_ADDR(I2C_HandleTypeDef *hi2c);
static HAL_StatusTypeDef I2C_Slave_STOPF(I2C_HandleTypeDef *hi2c);
static HAL_StatusTypeDef I2C_Slave_AF(I2C_HandleTypeDef *hi2c);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup I2C_Exported_Functions I2C Exported Functions
* @{
*/
/** @defgroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This subsection provides a set of functions allowing to initialize and
de-initialize the I2Cx peripheral:
(+) User must Implement HAL_I2C_MspInit() function in which he configures
all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC).
(+) Call the function HAL_I2C_Init() to configure the selected device with
the selected configuration:
(++) Communication Speed
(++) Duty cycle
(++) Addressing mode
(++) Own Address 1
(++) Dual Addressing mode
(++) Own Address 2
(++) General call mode
(++) Nostretch mode
(+) Call the function HAL_I2C_DeInit() to restore the default configuration
of the selected I2Cx peripheral.
@endverbatim
* @{
*/
/**
* @brief Initializes the I2C according to the specified parameters
* in the I2C_InitTypeDef and create the associated handle.
* @param hi2c: pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c)
{
uint32_t freqrange = 0U;
uint32_t pclk1 = 0U;
/* Check the I2C handle allocation */
if(hi2c == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
assert_param(IS_I2C_CLOCK_SPEED(hi2c->Init.ClockSpeed));
assert_param(IS_I2C_DUTY_CYCLE(hi2c->Init.DutyCycle));
assert_param(IS_I2C_OWN_ADDRESS1(hi2c->Init.OwnAddress1));
assert_param(IS_I2C_ADDRESSING_MODE(hi2c->Init.AddressingMode));
assert_param(IS_I2C_DUAL_ADDRESS(hi2c->Init.DualAddressMode));
assert_param(IS_I2C_OWN_ADDRESS2(hi2c->Init.OwnAddress2));
assert_param(IS_I2C_GENERAL_CALL(hi2c->Init.GeneralCallMode));
assert_param(IS_I2C_NO_STRETCH(hi2c->Init.NoStretchMode));
if(hi2c->State == HAL_I2C_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hi2c->Lock = HAL_UNLOCKED;
/* Init the low level hardware : GPIO, CLOCK, NVIC */
HAL_I2C_MspInit(hi2c);
}
hi2c->State = HAL_I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
__HAL_I2C_DISABLE(hi2c);
/* Get PCLK1 frequency */
pclk1 = HAL_RCC_GetPCLK1Freq();
/* Calculate frequency range */
freqrange = I2C_FREQRANGE(pclk1);
/*---------------------------- I2Cx CR2 Configuration ----------------------*/
/* Configure I2Cx: Frequency range */
hi2c->Instance->CR2 = freqrange;
/*---------------------------- I2Cx TRISE Configuration --------------------*/
/* Configure I2Cx: Rise Time */
hi2c->Instance->TRISE = I2C_RISE_TIME(freqrange, hi2c->Init.ClockSpeed);
/*---------------------------- I2Cx CCR Configuration ----------------------*/
/* Configure I2Cx: Speed */
hi2c->Instance->CCR = I2C_SPEED(pclk1, hi2c->Init.ClockSpeed, hi2c->Init.DutyCycle);
/*---------------------------- I2Cx CR1 Configuration ----------------------*/
/* Configure I2Cx: Generalcall and NoStretch mode */
hi2c->Instance->CR1 = (hi2c->Init.GeneralCallMode | hi2c->Init.NoStretchMode);
/*---------------------------- I2Cx OAR1 Configuration ---------------------*/
/* Configure I2Cx: Own Address1 and addressing mode */
hi2c->Instance->OAR1 = (hi2c->Init.AddressingMode | hi2c->Init.OwnAddress1);
/*---------------------------- I2Cx OAR2 Configuration ---------------------*/
/* Configure I2Cx: Dual mode and Own Address2 */
hi2c->Instance->OAR2 = (hi2c->Init.DualAddressMode | hi2c->Init.OwnAddress2);
/* Enable the selected I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
hi2c->State = HAL_I2C_STATE_READY;
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->Mode = HAL_I2C_MODE_NONE;
return HAL_OK;
}
/**
* @brief DeInitializes the I2C peripheral.
* @param hi2c: pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_DeInit(I2C_HandleTypeDef *hi2c)
{
/* Check the I2C handle allocation */
if(hi2c == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
hi2c->State = HAL_I2C_STATE_BUSY;
/* Disable the I2C Peripheral Clock */
__HAL_I2C_DISABLE(hi2c);
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
HAL_I2C_MspDeInit(hi2c);
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
hi2c->State = HAL_I2C_STATE_RESET;
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->Mode = HAL_I2C_MODE_NONE;
/* Release Lock */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
/**
* @brief I2C MSP Init.
* @param hi2c: pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval None
*/
__weak void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2c);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_I2C_MspInit could be implemented in the user file
*/
}
/**
* @brief I2C MSP DeInit
* @param hi2c: pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval None
*/
__weak void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2c);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_I2C_MspDeInit could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup I2C_Exported_Functions_Group2 IO operation functions
* @brief Data transfers functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the I2C data
transfers.
(#) There are two modes of transfer:
(++) Blocking mode : The communication is performed in the polling mode.
The status of all data processing is returned by the same function
after finishing transfer.
(++) No-Blocking mode : The communication is performed using Interrupts
or DMA. These functions return the status of the transfer startup.
The end of the data processing will be indicated through the
dedicated I2C IRQ when using Interrupt mode or the DMA IRQ when
using DMA mode.
(#) Blocking mode functions are :
(++) HAL_I2C_Master_Transmit()
(++) HAL_I2C_Master_Receive()
(++) HAL_I2C_Slave_Transmit()
(++) HAL_I2C_Slave_Receive()
(++) HAL_I2C_Mem_Write()
(++) HAL_I2C_Mem_Read()
(++) HAL_I2C_IsDeviceReady()
(#) No-Blocking mode functions with Interrupt are :
(++) HAL_I2C_Master_Transmit_IT()
(++) HAL_I2C_Master_Receive_IT()
(++) HAL_I2C_Slave_Transmit_IT()
(++) HAL_I2C_Slave_Receive_IT()
(++) HAL_I2C_Master_Sequential_Transmit_IT()
(++) HAL_I2C_Master_Sequential_Receive_IT()
(++) HAL_I2C_Slave_Sequential_Transmit_IT()
(++) HAL_I2C_Slave_Sequential_Receive_IT()
(++) HAL_I2C_Mem_Write_IT()
(++) HAL_I2C_Mem_Read_IT()
(#) No-Blocking mode functions with DMA are :
(++) HAL_I2C_Master_Transmit_DMA()
(++) HAL_I2C_Master_Receive_DMA()
(++) HAL_I2C_Slave_Transmit_DMA()
(++) HAL_I2C_Slave_Receive_DMA()
(++) HAL_I2C_Mem_Write_DMA()
(++) HAL_I2C_Mem_Read_DMA()
(#) A set of Transfer Complete Callbacks are provided in non Blocking mode:
(++) HAL_I2C_MemTxCpltCallback()
(++) HAL_I2C_MemRxCpltCallback()
(++) HAL_I2C_MasterTxCpltCallback()
(++) HAL_I2C_MasterRxCpltCallback()
(++) HAL_I2C_SlaveTxCpltCallback()
(++) HAL_I2C_SlaveRxCpltCallback()
(++) HAL_I2C_ErrorCallback()
(++) HAL_I2C_AbortCpltCallback()
@endverbatim
* @{
*/
/**
* @brief Transmits in master mode an amount of data in blocking mode.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shift at right before call interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart = 0x00U;
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Wait until BUSY flag is reset */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG, tickstart) != HAL_OK)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_TX;
hi2c->Mode = HAL_I2C_MODE_MASTER;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->XferSize = hi2c->XferCount;
/* Send Slave Address */
if(I2C_MasterRequestWrite(hi2c, DevAddress, Timeout, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_ERROR;
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
while(hi2c->XferSize > 0U)
{
/* Wait until TXE flag is set */
if(I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* Write data to DR */
hi2c->Instance->DR = (*hi2c->pBuffPtr++);
hi2c->XferCount--;
hi2c->XferSize--;
if((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) && (hi2c->XferSize != 0U))
{
/* Write data to DR */
hi2c->Instance->DR = (*hi2c->pBuffPtr++);
hi2c->XferCount--;
hi2c->XferSize--;
}
/* Wait until BTF flag is set */
if(I2C_WaitOnBTFFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
}
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receives in master mode an amount of data in blocking mode.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shift at right before call interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart = 0x00U;
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Wait until BUSY flag is reset */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG, tickstart) != HAL_OK)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_RX;
hi2c->Mode = HAL_I2C_MODE_MASTER;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->XferSize = hi2c->XferCount;
/* Send Slave Address */
if(I2C_MasterRequestRead(hi2c, DevAddress, Timeout, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_ERROR;
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
if(hi2c->XferSize == 0U)
{
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
}
else if(hi2c->XferSize == 1U)
{
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
/* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
software sequence must complete before the current byte end of transfer */
__disable_irq();
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
/* Re-enable IRQs */
__enable_irq();
}
else if(hi2c->XferSize == 2U)
{
/* Enable Pos */
hi2c->Instance->CR1 |= I2C_CR1_POS;
/* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
software sequence must complete before the current byte end of transfer */
__disable_irq();
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
/* Re-enable IRQs */
__enable_irq();
}
else
{
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
}
while(hi2c->XferSize > 0U)
{
if(hi2c->XferSize <= 3U)
{
/* One byte */
if(hi2c->XferSize == 1U)
{
/* Wait until RXNE flag is set */
if(I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_TIMEOUT)
{
return HAL_TIMEOUT;
}
else
{
return HAL_ERROR;
}
}
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
}
/* Two bytes */
else if(hi2c->XferSize == 2U)
{
/* Wait until BTF flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
software sequence must complete before the current byte end of transfer */
__disable_irq();
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
/* Re-enable IRQs */
__enable_irq();
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
}
/* 3 Last bytes */
else
{
/* Wait until BTF flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
/* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
software sequence must complete before the current byte end of transfer */
__disable_irq();
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
/* Wait until BTF flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
/* Re-enable IRQs */
__enable_irq();
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
}
}
else
{
/* Wait until RXNE flag is set */
if(I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_TIMEOUT)
{
return HAL_TIMEOUT;
}
else
{
return HAL_ERROR;
}
}
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET)
{
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
}
}
}
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Transmits in slave mode an amount of data in blocking mode.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart = 0x00U;
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
if(hi2c->State == HAL_I2C_STATE_READY)
{
if((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_TX;
hi2c->Mode = HAL_I2C_MODE_SLAVE;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->XferSize = hi2c->XferCount;
/* Enable Address Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Wait until ADDR flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* If 10bit addressing mode is selected */
if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT)
{
/* Wait until ADDR flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
}
while(hi2c->XferSize > 0U)
{
/* Wait until TXE flag is set */
if(I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* Write data to DR */
hi2c->Instance->DR = (*hi2c->pBuffPtr++);
hi2c->XferCount--;
hi2c->XferSize--;
if((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) && (hi2c->XferSize != 0U))
{
/* Write data to DR */
hi2c->Instance->DR = (*hi2c->pBuffPtr++);
hi2c->XferCount--;
hi2c->XferSize--;
}
}
/* Wait until AF flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_AF, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Clear AF flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
/* Disable Address Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive in slave mode an amount of data in blocking mode
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart = 0x00U;
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
if(hi2c->State == HAL_I2C_STATE_READY)
{
if((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_RX;
hi2c->Mode = HAL_I2C_MODE_SLAVE;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->XferSize = hi2c->XferCount;
/* Enable Address Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Wait until ADDR flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
while(hi2c->XferSize > 0U)
{
/* Wait until RXNE flag is set */
if(I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
if(hi2c->ErrorCode == HAL_I2C_ERROR_TIMEOUT)
{
return HAL_TIMEOUT;
}
else
{
return HAL_ERROR;
}
}
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
if((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) && (Size != 0U))
{
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
}
}
/* Wait until STOP flag is set */
if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* Clear STOP flag */
__HAL_I2C_CLEAR_STOPFLAG(hi2c);
/* Disable Address Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Transmit in master mode an amount of data in non-blocking mode with Interrupt
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shift at right before call interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size)
{
__IO uint32_t count = 0U;
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Wait until BUSY flag is reset */
count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock /25U /1000U);
do
{
if(count-- == 0U)
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_TX;
hi2c->Mode = HAL_I2C_MODE_MASTER;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->XferSize = hi2c->XferCount;
hi2c->Devaddress = DevAddress;
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT, BUF and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive in master mode an amount of data in non-blocking mode with Interrupt
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shift at right before call interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size)
{
__IO uint32_t count = 0U;
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Wait until BUSY flag is reset */
count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock /25U /1000U);
do
{
if(count-- == 0U)
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_RX;
hi2c->Mode = HAL_I2C_MODE_MASTER;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->XferSize = hi2c->XferCount;
hi2c->Devaddress = DevAddress;
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT, BUF and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Sequential transmit in master mode an amount of data in non-blocking mode with Interrupt
* @note This interface allow to manage repeated start condition when a direction change during transfer
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shift at right before call interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param XferOptions Options of Transfer, value of @ref I2C_XferOptions_definition
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Master_Sequential_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions)
{
__IO uint32_t Prev_State = 0x00U;
__IO uint32_t count = 0x00U;
/* Check the parameters */
assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Check Busy Flag only if FIRST call of Master interface */
if((XferOptions == I2C_FIRST_AND_LAST_FRAME) || (XferOptions == I2C_FIRST_FRAME))
{
/* Wait until BUSY flag is reset */
count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock /25U /1000U);
do
{
if(count-- == 0U)
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
}
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_TX;
hi2c->Mode = HAL_I2C_MODE_MASTER;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = XferOptions;
hi2c->XferSize = hi2c->XferCount;
hi2c->Devaddress = DevAddress;
Prev_State = hi2c->PreviousState;
/* Generate Start */
if((Prev_State == I2C_STATE_MASTER_BUSY_RX) || (Prev_State == I2C_STATE_NONE))
{
/* Generate Start condition if first transfer */
if((XferOptions == I2C_FIRST_AND_LAST_FRAME) || (XferOptions == I2C_FIRST_FRAME))
{
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
}
else
{
/* Generate ReStart */
hi2c->Instance->CR1 |= I2C_CR1_START;
}
}
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT, BUF and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Sequential receive in master mode an amount of data in non-blocking mode with Interrupt
* @note This interface allow to manage repeated start condition when a direction change during transfer
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shift at right before call interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param XferOptions Options of Transfer, value of @ref I2C_XferOptions_definition
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Master_Sequential_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions)
{
__IO uint32_t count = 0U;
/* Check the parameters */
assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Check Busy Flag only if FIRST call of Master interface */
if((XferOptions == I2C_FIRST_AND_LAST_FRAME) || (XferOptions == I2C_FIRST_FRAME))
{
/* Wait until BUSY flag is reset */
count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock /25U /1000U);
do
{
if(count-- == 0U)
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
}
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_RX;
hi2c->Mode = HAL_I2C_MODE_MASTER;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = XferOptions;
hi2c->XferSize = hi2c->XferCount;
hi2c->Devaddress = DevAddress;
if((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_TX) || (hi2c->PreviousState == I2C_STATE_NONE))
{
/* Generate Start condition if first transfer */
if((XferOptions == I2C_FIRST_AND_LAST_FRAME) || (XferOptions == I2C_FIRST_FRAME) || (XferOptions == I2C_NO_OPTION_FRAME))
{
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
}
else
{
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Generate ReStart */
hi2c->Instance->CR1 |= I2C_CR1_START;
}
}
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT, BUF and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Transmit in slave mode an amount of data in non-blocking mode with Interrupt
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size)
{
__IO uint32_t count = 0U;
if(hi2c->State == HAL_I2C_STATE_READY)
{
if((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Wait until BUSY flag is reset */
count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock /25U /1000U);
do
{
if(count-- == 0U)
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_TX;
hi2c->Mode = HAL_I2C_MODE_SLAVE;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->XferSize = hi2c->XferCount;
/* Enable Address Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT, BUF and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive in slave mode an amount of data in non-blocking mode with Interrupt
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size)
{
__IO uint32_t count = 0U;
if(hi2c->State == HAL_I2C_STATE_READY)
{
if((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Wait until BUSY flag is reset */
count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock /25U /1000U);
do
{
if(count-- == 0U)
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_RX;
hi2c->Mode = HAL_I2C_MODE_SLAVE;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferSize = Size;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
/* Enable Address Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT, BUF and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Sequential transmit in slave mode an amount of data in no-blocking mode with Interrupt
* @note This interface allow to manage repeated start condition when a direction change during transfer
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param XferOptions Options of Transfer, value of @ref I2C_XferOptions_definition
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Slave_Sequential_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions)
{
/* Check the parameters */
assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
if(hi2c->State == HAL_I2C_STATE_LISTEN)
{
if((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_TX_LISTEN;
hi2c->Mode = HAL_I2C_MODE_SLAVE;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = XferOptions;
hi2c->XferSize = hi2c->XferCount;
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT, BUF and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Sequential receive in slave mode an amount of data in non-blocking mode with Interrupt
* @note This interface allow to manage repeated start condition when a direction change during transfer
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param XferOptions Options of Transfer, value of @ref I2C_XferOptions_definition
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Slave_Sequential_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions)
{
/* Check the parameters */
assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
if(hi2c->State == HAL_I2C_STATE_LISTEN)
{
if((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_RX_LISTEN;
hi2c->Mode = HAL_I2C_MODE_SLAVE;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = XferOptions;
hi2c->XferSize = hi2c->XferCount;
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT, BUF and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Enable the Address listen mode with Interrupt.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c)
{
if(hi2c->State == HAL_I2C_STATE_READY)
{
hi2c->State = HAL_I2C_STATE_LISTEN;
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Enable Address Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Enable EVT and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Disable the Address listen mode with Interrupt.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c)
{
/* Declaration of tmp to prevent undefined behavior of volatile usage */
uint32_t tmp;
/* Disable Address listen mode only if a transfer is not ongoing */
if(hi2c->State == HAL_I2C_STATE_LISTEN)
{
tmp = (uint32_t)(hi2c->State) & I2C_STATE_MSK;
hi2c->PreviousState = tmp | (uint32_t)(hi2c->Mode);
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
/* Disable Address Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
/* Disable EVT and ERR interrupt */
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Transmit in master mode an amount of data in non-blocking mode with DMA
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shift at right before call interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size)
{
__IO uint32_t count = 0U;
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Wait until BUSY flag is reset */
count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock /25U /1000U);
do
{
if(count-- == 0U)
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_TX;
hi2c->Mode = HAL_I2C_MODE_MASTER;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->XferSize = hi2c->XferCount;
hi2c->Devaddress = DevAddress;
if(hi2c->XferSize > 0U)
{
/* Set the I2C DMA transfer complete callback */
hi2c->hdmatx->XferCpltCallback = I2C_DMAXferCplt;
/* Set the DMA error callback */
hi2c->hdmatx->XferErrorCallback = I2C_DMAError;
/* Set the unused DMA callbacks to NULL */
hi2c->hdmatx->XferHalfCpltCallback = NULL;
hi2c->hdmatx->XferAbortCallback = NULL;
/* Enable the DMA channel */
HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->DR, hi2c->XferSize);
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
/* Enable DMA Request */
hi2c->Instance->CR2 |= I2C_CR2_DMAEN;
}
else
{
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT, BUF and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive in master mode an amount of data in non-blocking mode with DMA
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shift at right before call interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size)
{
__IO uint32_t count = 0U;
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Wait until BUSY flag is reset */
count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock /25U /1000U);
do
{
if(count-- == 0U)
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_RX;
hi2c->Mode = HAL_I2C_MODE_MASTER;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->XferSize = hi2c->XferCount;
hi2c->Devaddress = DevAddress;
if(hi2c->XferSize > 0U)
{
/* Set the I2C DMA transfer complete callback */
hi2c->hdmarx->XferCpltCallback = I2C_DMAXferCplt;
/* Set the DMA error callback */
hi2c->hdmarx->XferErrorCallback = I2C_DMAError;
/* Set the unused DMA callbacks to NULL */
hi2c->hdmarx->XferHalfCpltCallback = NULL;
hi2c->hdmarx->XferAbortCallback = NULL;
/* Enable the DMA channel */
HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->DR, (uint32_t)hi2c->pBuffPtr, hi2c->XferSize);
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
/* Enable DMA Request */
hi2c->Instance->CR2 |= I2C_CR2_DMAEN;
}
else
{
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT, BUF and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Abort a master I2C process communication with Interrupt.
* @note This abort can be called only if state is ready
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shift at right before call interface
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(DevAddress);
/* Abort Master transfer during Receive or Transmit process */
if(hi2c->Mode == HAL_I2C_MODE_MASTER)
{
/* Process Locked */
__HAL_LOCK(hi2c);
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State = HAL_I2C_STATE_ABORT;
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
hi2c->XferCount = 0U;
/* Disable EVT, BUF and ERR interrupt */
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Call the corresponding callback to inform upper layer of End of Transfer */
I2C_ITError(hi2c);
return HAL_OK;
}
else
{
/* Wrong usage of abort function */
/* This function should be used only in case of abort monitored by master device */
return HAL_ERROR;
}
}
/**
* @brief Transmit in slave mode an amount of data in non-blocking mode with DMA
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size)
{
__IO uint32_t count = 0U;
if(hi2c->State == HAL_I2C_STATE_READY)
{
if((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Wait until BUSY flag is reset */
count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock /25U /1000U);
do
{
if(count-- == 0U)
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_TX;
hi2c->Mode = HAL_I2C_MODE_SLAVE;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->XferSize = hi2c->XferCount;
/* Set the I2C DMA transfer complete callback */
hi2c->hdmatx->XferCpltCallback = I2C_DMAXferCplt;
/* Set the DMA error callback */
hi2c->hdmatx->XferErrorCallback = I2C_DMAError;
/* Set the unused DMA callbacks to NULL */
hi2c->hdmatx->XferHalfCpltCallback = NULL;
hi2c->hdmatx->XferAbortCallback = NULL;
/* Enable the DMA channel */
HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->DR, hi2c->XferSize);
/* Enable Address Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
/* Enable DMA Request */
hi2c->Instance->CR2 |= I2C_CR2_DMAEN;
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive in slave mode an amount of data in non-blocking mode with DMA
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size)
{
__IO uint32_t count = 0U;
if(hi2c->State == HAL_I2C_STATE_READY)
{
if((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Wait until BUSY flag is reset */
count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock /25U /1000U);
do
{
if(count-- == 0U)
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_RX;
hi2c->Mode = HAL_I2C_MODE_SLAVE;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->XferSize = hi2c->XferCount;
/* Set the I2C DMA transfer complete callback */
hi2c->hdmarx->XferCpltCallback = I2C_DMAXferCplt;
/* Set the DMA error callback */
hi2c->hdmarx->XferErrorCallback = I2C_DMAError;
/* Set the unused DMA callbacks to NULL */
hi2c->hdmarx->XferHalfCpltCallback = NULL;
hi2c->hdmarx->XferAbortCallback = NULL;
/* Enable the DMA channel */
HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->DR, (uint32_t)hi2c->pBuffPtr, hi2c->XferSize);
/* Enable Address Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
/* Enable DMA Request */
hi2c->Instance->CR2 |= I2C_CR2_DMAEN;
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Write an amount of data in blocking mode to a specific memory address
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address
* @param MemAddress Internal memory address
* @param MemAddSize Size of internal memory address
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart = 0x00U;
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Check the parameters */
assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Wait until BUSY flag is reset */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG, tickstart) != HAL_OK)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_TX;
hi2c->Mode = HAL_I2C_MODE_MEM;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->XferSize = hi2c->XferCount;
/* Send Slave Address and Memory Address */
if(I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_ERROR;
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(hi2c->XferSize > 0U)
{
/* Wait until TXE flag is set */
if(I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* Write data to DR */
hi2c->Instance->DR = (*hi2c->pBuffPtr++);
hi2c->XferSize--;
hi2c->XferCount--;
if((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) && (hi2c->XferSize != 0U))
{
/* Write data to DR */
hi2c->Instance->DR = (*hi2c->pBuffPtr++);
hi2c->XferSize--;
hi2c->XferCount--;
}
}
/* Wait until BTF flag is set */
if(I2C_WaitOnBTFFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Read an amount of data in blocking mode from a specific memory address
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address
* @param MemAddress Internal memory address
* @param MemAddSize Size of internal memory address
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart = 0x00U;
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Check the parameters */
assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Wait until BUSY flag is reset */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG, tickstart) != HAL_OK)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_RX;
hi2c->Mode = HAL_I2C_MODE_MEM;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->XferSize = hi2c->XferCount;
/* Send Slave Address and Memory Address */
if(I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_ERROR;
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
if(hi2c->XferSize == 0U)
{
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
}
else if(hi2c->XferSize == 1U)
{
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
/* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
software sequence must complete before the current byte end of transfer */
__disable_irq();
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
/* Re-enable IRQs */
__enable_irq();
}
else if(hi2c->XferSize == 2U)
{
/* Enable Pos */
hi2c->Instance->CR1 |= I2C_CR1_POS;
/* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
software sequence must complete before the current byte end of transfer */
__disable_irq();
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
/* Re-enable IRQs */
__enable_irq();
}
else
{
/* Enable Acknowledge */
SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
}
while(hi2c->XferSize > 0U)
{
if(hi2c->XferSize <= 3U)
{
/* One byte */
if(hi2c->XferSize== 1U)
{
/* Wait until RXNE flag is set */
if(I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_TIMEOUT)
{
return HAL_TIMEOUT;
}
else
{
return HAL_ERROR;
}
}
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
}
/* Two bytes */
else if(hi2c->XferSize == 2U)
{
/* Wait until BTF flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
software sequence must complete before the current byte end of transfer */
__disable_irq();
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
/* Re-enable IRQs */
__enable_irq();
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
}
/* 3 Last bytes */
else
{
/* Wait until BTF flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
/* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
software sequence must complete before the current byte end of transfer */
__disable_irq();
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
/* Wait until BTF flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
/* Re-enable IRQs */
__enable_irq();
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
}
}
else
{
/* Wait until RXNE flag is set */
if(I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_TIMEOUT)
{
return HAL_TIMEOUT;
}
else
{
return HAL_ERROR;
}
}
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET)
{
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferSize--;
hi2c->XferCount--;
}
}
}
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Write an amount of data in non-blocking mode with Interrupt to a specific memory address
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address
* @param MemAddress Internal memory address
* @param MemAddSize Size of internal memory address
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
{
__IO uint32_t count = 0U;
/* Check the parameters */
assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Wait until BUSY flag is reset */
count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock /25U /1000U);
do
{
if(count-- == 0U)
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_TX;
hi2c->Mode = HAL_I2C_MODE_MEM;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferSize = Size;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->Devaddress = DevAddress;
hi2c->Memaddress = MemAddress;
hi2c->MemaddSize = MemAddSize;
hi2c->EventCount = 0U;
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT, BUF and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Read an amount of data in non-blocking mode with Interrupt from a specific memory address
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address
* @param MemAddress Internal memory address
* @param MemAddSize Size of internal memory address
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
{
__IO uint32_t count = 0U;
/* Check the parameters */
assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Wait until BUSY flag is reset */
count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock /25U /1000U);
do
{
if(count-- == 0U)
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_RX;
hi2c->Mode = HAL_I2C_MODE_MEM;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferSize = Size;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->Devaddress = DevAddress;
hi2c->Memaddress = MemAddress;
hi2c->MemaddSize = MemAddSize;
hi2c->EventCount = 0U;
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
if(hi2c->XferSize > 0U)
{
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable EVT, BUF and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Write an amount of data in non-blocking mode with DMA to a specific memory address
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address
* @param MemAddress Internal memory address
* @param MemAddSize Size of internal memory address
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
{
__IO uint32_t count = 0U;
uint32_t tickstart = 0x00U;
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Check the parameters */
assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Wait until BUSY flag is reset */
count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock /25U /1000U);
do
{
if(count-- == 0U)
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_TX;
hi2c->Mode = HAL_I2C_MODE_MEM;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferSize = Size;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
if(hi2c->XferSize > 0U)
{
/* Set the I2C DMA transfer complete callback */
hi2c->hdmatx->XferCpltCallback = I2C_DMAXferCplt;
/* Set the DMA error callback */
hi2c->hdmatx->XferErrorCallback = I2C_DMAError;
/* Set the unused DMA callbacks to NULL */
hi2c->hdmatx->XferHalfCpltCallback = NULL;
hi2c->hdmatx->XferAbortCallback = NULL;
/* Enable the DMA channel */
HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->DR, hi2c->XferSize);
/* Send Slave Address and Memory Address */
if(I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_ERROR;
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_ERR);
/* Enable DMA Request */
hi2c->Instance->CR2 |= I2C_CR2_DMAEN;
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Reads an amount of data in non-blocking mode with DMA from a specific memory address.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address
* @param MemAddress Internal memory address
* @param MemAddSize Size of internal memory address
* @param pData Pointer to data buffer
* @param Size Amount of data to be read
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
{
uint32_t tickstart = 0x00U;
__IO uint32_t count = 0U;
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Check the parameters */
assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Wait until BUSY flag is reset */
count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock /25U /1000U);
do
{
if(count-- == 0U)
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY_RX;
hi2c->Mode = HAL_I2C_MODE_MEM;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->XferSize = hi2c->XferCount;
if(hi2c->XferSize > 0U)
{
/* Set the I2C DMA transfer complete callback */
hi2c->hdmarx->XferCpltCallback = I2C_DMAXferCplt;
/* Set the DMA error callback */
hi2c->hdmarx->XferErrorCallback = I2C_DMAError;
/* Set the unused DMA callbacks to NULL */
hi2c->hdmarx->XferAbortCallback = NULL;
/* Enable the DMA channel */
HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->DR, (uint32_t)hi2c->pBuffPtr, hi2c->XferSize);
/* Send Slave Address and Memory Address */
if(I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_ERROR;
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
if(Size == 1U)
{
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
}
else
{
/* Enable Last DMA bit */
hi2c->Instance->CR2 |= I2C_CR2_LAST;
}
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_ERR);
/* Enable DMA Request */
hi2c->Instance->CR2 |= I2C_CR2_DMAEN;
}
else
{
/* Send Slave Address and Memory Address */
if(I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_ERROR;
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Checks if target device is ready for communication.
* @note This function is used with Memory devices
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address
* @param Trials Number of trials
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout)
{
uint32_t tickstart = 0U, tmp1 = 0U, tmp2 = 0U, tmp3 = 0U, I2C_Trials = 1U;
/* Get tick */
tickstart = HAL_GetTick();
if(hi2c->State == HAL_I2C_STATE_READY)
{
/* Wait until BUSY flag is reset */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG, tickstart) != HAL_OK)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2c);
/* Check if the I2C is already enabled */
if((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE)
{
/* Enable I2C peripheral */
__HAL_I2C_ENABLE(hi2c);
}
/* Disable Pos */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
hi2c->State = HAL_I2C_STATE_BUSY;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
do
{
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
/* Wait until SB flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Send slave address */
hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(DevAddress);
/* Wait until ADDR or AF flag are set */
/* Get tick */
tickstart = HAL_GetTick();
tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR);
tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF);
tmp3 = hi2c->State;
while((tmp1 == RESET) && (tmp2 == RESET) && (tmp3 != HAL_I2C_STATE_TIMEOUT))
{
if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
{
hi2c->State = HAL_I2C_STATE_TIMEOUT;
}
tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR);
tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF);
tmp3 = hi2c->State;
}
hi2c->State = HAL_I2C_STATE_READY;
/* Check if the ADDR flag has been set */
if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR) == SET)
{
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
/* Clear ADDR Flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Wait until BUSY flag is reset */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
/* Clear AF Flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
/* Wait until BUSY flag is reset */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG, tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
}
}while(I2C_Trials++ < Trials);
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_ERROR;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief This function handles I2C event interrupt request.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c)
{
uint32_t sr2itflags = READ_REG(hi2c->Instance->SR2);
uint32_t sr1itflags = READ_REG(hi2c->Instance->SR1);
uint32_t itsources = READ_REG(hi2c->Instance->CR2);
uint32_t CurrentMode = hi2c->Mode;
/* Master or Memory mode selected */
if((CurrentMode == HAL_I2C_MODE_MASTER) || (CurrentMode == HAL_I2C_MODE_MEM))
{
/* SB Set ----------------------------------------------------------------*/
if(((sr1itflags & I2C_FLAG_SB) != RESET) && ((itsources & I2C_IT_EVT) != RESET))
{
I2C_Master_SB(hi2c);
}
/* ADD10 Set -------------------------------------------------------------*/
else if(((sr1itflags & I2C_FLAG_ADD10) != RESET) && ((itsources & I2C_IT_EVT) != RESET))
{
I2C_Master_ADD10(hi2c);
}
/* ADDR Set --------------------------------------------------------------*/
else if(((sr1itflags & I2C_FLAG_ADDR) != RESET) && ((itsources & I2C_IT_EVT) != RESET))
{
I2C_Master_ADDR(hi2c);
}
/* I2C in mode Transmitter -----------------------------------------------*/
if((sr2itflags & I2C_FLAG_TRA) != RESET)
{
/* TXE set and BTF reset -----------------------------------------------*/
if(((sr1itflags & I2C_FLAG_TXE) != RESET) && ((itsources & I2C_IT_BUF) != RESET) && ((sr1itflags & I2C_FLAG_BTF) == RESET))
{
I2C_MasterTransmit_TXE(hi2c);
}
/* BTF set -------------------------------------------------------------*/
else if(((sr1itflags & I2C_FLAG_BTF) != RESET) && ((itsources & I2C_IT_EVT) != RESET))
{
I2C_MasterTransmit_BTF(hi2c);
}
}
/* I2C in mode Receiver --------------------------------------------------*/
else
{
/* RXNE set and BTF reset -----------------------------------------------*/
if(((sr1itflags & I2C_FLAG_RXNE) != RESET) && ((itsources & I2C_IT_BUF) != RESET) && ((sr1itflags & I2C_FLAG_BTF) == RESET))
{
I2C_MasterReceive_RXNE(hi2c);
}
/* BTF set -------------------------------------------------------------*/
else if(((sr1itflags & I2C_FLAG_BTF) != RESET) && ((itsources & I2C_IT_EVT) != RESET))
{
I2C_MasterReceive_BTF(hi2c);
}
}
}
/* Slave mode selected */
else
{
/* ADDR set --------------------------------------------------------------*/
if(((sr1itflags & I2C_FLAG_ADDR) != RESET) && ((itsources & I2C_IT_EVT) != RESET))
{
I2C_Slave_ADDR(hi2c);
}
/* STOPF set --------------------------------------------------------------*/
else if(((sr1itflags & I2C_FLAG_STOPF) != RESET) && ((itsources & I2C_IT_EVT) != RESET))
{
I2C_Slave_STOPF(hi2c);
}
/* I2C in mode Transmitter -----------------------------------------------*/
else if((sr2itflags & I2C_FLAG_TRA) != RESET)
{
/* TXE set and BTF reset -----------------------------------------------*/
if(((sr1itflags & I2C_FLAG_TXE) != RESET) && ((itsources & I2C_IT_BUF) != RESET) && ((sr1itflags & I2C_FLAG_BTF) == RESET))
{
I2C_SlaveTransmit_TXE(hi2c);
}
/* BTF set -------------------------------------------------------------*/
else if(((sr1itflags & I2C_FLAG_BTF) != RESET) && ((itsources & I2C_IT_EVT) != RESET))
{
I2C_SlaveTransmit_BTF(hi2c);
}
}
/* I2C in mode Receiver --------------------------------------------------*/
else
{
/* RXNE set and BTF reset ----------------------------------------------*/
if(((sr1itflags & I2C_FLAG_RXNE) != RESET) && ((itsources & I2C_IT_BUF) != RESET) && ((sr1itflags & I2C_FLAG_BTF) == RESET))
{
I2C_SlaveReceive_RXNE(hi2c);
}
/* BTF set -------------------------------------------------------------*/
else if(((sr1itflags & I2C_FLAG_BTF) != RESET) && ((itsources & I2C_IT_EVT) != RESET))
{
I2C_SlaveReceive_BTF(hi2c);
}
}
}
}
/**
* @brief This function handles I2C error interrupt request.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c)
{
uint32_t tmp1 = 0U, tmp2 = 0U, tmp3 = 0U, tmp4 = 0U;
uint32_t sr1itflags = READ_REG(hi2c->Instance->SR1);
uint32_t itsources = READ_REG(hi2c->Instance->CR2);
/* I2C Bus error interrupt occurred ----------------------------------------*/
if(((sr1itflags & I2C_FLAG_BERR) != RESET) && ((itsources & I2C_IT_ERR) != RESET))
{
hi2c->ErrorCode |= HAL_I2C_ERROR_BERR;
/* Clear BERR flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR);
/* Workaround: Start cannot be generated after a misplaced Stop */
SET_BIT(hi2c->Instance->CR1, I2C_CR1_SWRST);
}
/* I2C Arbitration Loss error interrupt occurred ---------------------------*/
if(((sr1itflags & I2C_FLAG_ARLO) != RESET) && ((itsources & I2C_IT_ERR) != RESET))
{
hi2c->ErrorCode |= HAL_I2C_ERROR_ARLO;
/* Clear ARLO flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO);
}
/* I2C Acknowledge failure error interrupt occurred ------------------------*/
if(((sr1itflags & I2C_FLAG_AF) != RESET) && ((itsources & I2C_IT_ERR) != RESET))
{
tmp1 = hi2c->Mode;
tmp2 = hi2c->XferCount;
tmp3 = hi2c->State;
tmp4 = hi2c->PreviousState;
if((tmp1 == HAL_I2C_MODE_SLAVE) && (tmp2 == 0U) && \
((tmp3 == HAL_I2C_STATE_BUSY_TX) || (tmp3 == HAL_I2C_STATE_BUSY_TX_LISTEN) || \
((tmp3 == HAL_I2C_STATE_LISTEN) && (tmp4 == I2C_STATE_SLAVE_BUSY_TX))))
{
I2C_Slave_AF(hi2c);
}
else
{
hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
/* Do not generate a STOP in case of Slave receive non acknowledge during transfer (mean not at the end of transfer) */
if(hi2c->Mode == HAL_I2C_MODE_MASTER)
{
/* Generate Stop */
SET_BIT(hi2c->Instance->CR1,I2C_CR1_STOP);
}
/* Clear AF flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
}
}
/* I2C Over-Run/Under-Run interrupt occurred -------------------------------*/
if(((sr1itflags & I2C_FLAG_OVR) != RESET) && ((itsources & I2C_IT_ERR) != RESET))
{
hi2c->ErrorCode |= HAL_I2C_ERROR_OVR;
/* Clear OVR flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR);
}
/* Call the Error Callback in case of Error detected -----------------------*/
if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
{
I2C_ITError(hi2c);
}
}
/**
* @brief Master Tx Transfer completed callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
__weak void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2c);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_I2C_MasterTxCpltCallback can be implemented in the user file
*/
}
/**
* @brief Master Rx Transfer completed callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
__weak void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2c);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_I2C_MasterRxCpltCallback can be implemented in the user file
*/
}
/** @brief Slave Tx Transfer completed callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
__weak void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2c);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_I2C_SlaveTxCpltCallback can be implemented in the user file
*/
}
/**
* @brief Slave Rx Transfer completed callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
__weak void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2c);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_I2C_SlaveRxCpltCallback can be implemented in the user file
*/
}
/**
* @brief Slave Address Match callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param TransferDirection Master request Transfer Direction (Write/Read), value of @ref I2C_XferOptions_definition
* @param AddrMatchCode Address Match Code
* @retval None
*/
__weak void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2c);
UNUSED(TransferDirection);
UNUSED(AddrMatchCode);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_I2C_AddrCallback can be implemented in the user file
*/
}
/**
* @brief Listen Complete callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
__weak void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2c);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_I2C_ListenCpltCallback can be implemented in the user file
*/
}
/**
* @brief Memory Tx Transfer completed callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
__weak void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2c);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_I2C_MemTxCpltCallback can be implemented in the user file
*/
}
/**
* @brief Memory Rx Transfer completed callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
__weak void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2c);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_I2C_MemRxCpltCallback can be implemented in the user file
*/
}
/**
* @brief I2C error callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
__weak void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2c);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_I2C_ErrorCallback can be implemented in the user file
*/
}
/**
* @brief I2C abort callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
__weak void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2c);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_I2C_AbortCpltCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup I2C_Exported_Functions_Group3 Peripheral State, Mode and Error functions
* @brief Peripheral State and Errors functions
*
@verbatim
===============================================================================
##### Peripheral State, Mode and Error functions #####
===============================================================================
[..]
This subsection permits to get in run-time the status of the peripheral
and the data flow.
@endverbatim
* @{
*/
/**
* @brief Return the I2C handle state.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval HAL state
*/
HAL_I2C_StateTypeDef HAL_I2C_GetState(I2C_HandleTypeDef *hi2c)
{
/* Return I2C handle state */
return hi2c->State;
}
/**
* @brief Return the I2C Master, Slave, Memory or no mode.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL mode
*/
HAL_I2C_ModeTypeDef HAL_I2C_GetMode(I2C_HandleTypeDef *hi2c)
{
return hi2c->Mode;
}
/**
* @brief Return the I2C error code
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval I2C Error Code
*/
uint32_t HAL_I2C_GetError(I2C_HandleTypeDef *hi2c)
{
return hi2c->ErrorCode;
}
/**
* @}
*/
/**
* @brief Handle TXE flag for Master
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_MasterTransmit_TXE(I2C_HandleTypeDef *hi2c)
{
/* Declaration of temporary variables to prevent undefined behavior of volatile usage */
uint32_t CurrentState = hi2c->State;
uint32_t CurrentMode = hi2c->Mode;
uint32_t CurrentXferOptions = hi2c->XferOptions;
if((hi2c->XferSize == 0U) && (CurrentState == HAL_I2C_STATE_BUSY_TX))
{
/* Call TxCpltCallback() directly if no stop mode is set */
if((CurrentXferOptions != I2C_FIRST_AND_LAST_FRAME) && (CurrentXferOptions != I2C_LAST_FRAME) && (CurrentXferOptions != I2C_NO_OPTION_FRAME))
{
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
hi2c->PreviousState = I2C_STATE_MASTER_BUSY_TX;
hi2c->Mode = HAL_I2C_MODE_NONE;
hi2c->State = HAL_I2C_STATE_READY;
HAL_I2C_MasterTxCpltCallback(hi2c);
}
else /* Generate Stop condition then Call TxCpltCallback() */
{
/* Disable EVT, BUF and ERR interrupt */
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State = HAL_I2C_STATE_READY;
if(hi2c->Mode == HAL_I2C_MODE_MEM)
{
hi2c->Mode = HAL_I2C_MODE_NONE;
HAL_I2C_MemTxCpltCallback(hi2c);
}
else
{
hi2c->Mode = HAL_I2C_MODE_NONE;
HAL_I2C_MasterTxCpltCallback(hi2c);
}
}
}
else if((CurrentState == HAL_I2C_STATE_BUSY_TX) || \
((CurrentMode == HAL_I2C_MODE_MEM) && (CurrentState == HAL_I2C_STATE_BUSY_RX)))
{
if(hi2c->XferCount == 0U)
{
/* Disable BUF interrupt */
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_BUF);
}
else
{
if(hi2c->Mode == HAL_I2C_MODE_MEM)
{
if(hi2c->EventCount == 0)
{
/* If Memory address size is 8Bit */
if(hi2c->MemaddSize == I2C_MEMADD_SIZE_8BIT)
{
/* Send Memory Address */
hi2c->Instance->DR = I2C_MEM_ADD_LSB(hi2c->Memaddress);
hi2c->EventCount += 2;
}
/* If Memory address size is 16Bit */
else
{
/* Send MSB of Memory Address */
hi2c->Instance->DR = I2C_MEM_ADD_MSB(hi2c->Memaddress);
hi2c->EventCount++;
}
}
else if(hi2c->EventCount == 1)
{
/* Send LSB of Memory Address */
hi2c->Instance->DR = I2C_MEM_ADD_LSB(hi2c->Memaddress);
hi2c->EventCount++;
}
else if(hi2c->EventCount == 2)
{
if(hi2c->State == HAL_I2C_STATE_BUSY_RX)
{
/* Generate Restart */
hi2c->Instance->CR1 |= I2C_CR1_START;
}
else if(hi2c->State == HAL_I2C_STATE_BUSY_TX)
{
/* Write data to DR */
hi2c->Instance->DR = (*hi2c->pBuffPtr++);
hi2c->XferCount--;
}
}
}
else
{
/* Write data to DR */
hi2c->Instance->DR = (*hi2c->pBuffPtr++);
hi2c->XferCount--;
}
}
}
return HAL_OK;
}
/**
* @brief Handle BTF flag for Master transmitter
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_MasterTransmit_BTF(I2C_HandleTypeDef *hi2c)
{
/* Declaration of temporary variables to prevent undefined behavior of volatile usage */
uint32_t CurrentXferOptions = hi2c->XferOptions;
if(hi2c->State == HAL_I2C_STATE_BUSY_TX)
{
if(hi2c->XferCount != 0U)
{
/* Write data to DR */
hi2c->Instance->DR = (*hi2c->pBuffPtr++);
hi2c->XferCount--;
}
else
{
/* Call TxCpltCallback() directly if no stop mode is set */
if((CurrentXferOptions != I2C_FIRST_AND_LAST_FRAME) && (CurrentXferOptions != I2C_LAST_FRAME) && (CurrentXferOptions != I2C_NO_OPTION_FRAME))
{
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
hi2c->PreviousState = I2C_STATE_MASTER_BUSY_TX;
hi2c->Mode = HAL_I2C_MODE_NONE;
hi2c->State = HAL_I2C_STATE_READY;
HAL_I2C_MasterTxCpltCallback(hi2c);
}
else /* Generate Stop condition then Call TxCpltCallback() */
{
/* Disable EVT, BUF and ERR interrupt */
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State = HAL_I2C_STATE_READY;
if(hi2c->Mode == HAL_I2C_MODE_MEM)
{
hi2c->Mode = HAL_I2C_MODE_NONE;
HAL_I2C_MemTxCpltCallback(hi2c);
}
else
{
hi2c->Mode = HAL_I2C_MODE_NONE;
HAL_I2C_MasterTxCpltCallback(hi2c);
}
}
}
}
return HAL_OK;
}
/**
* @brief Handle RXNE flag for Master
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_MasterReceive_RXNE(I2C_HandleTypeDef *hi2c)
{
if(hi2c->State == HAL_I2C_STATE_BUSY_RX)
{
uint32_t tmp = 0U;
tmp = hi2c->XferCount;
if(tmp > 3U)
{
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferCount--;
}
else if((tmp == 2U) || (tmp == 3U))
{
if(hi2c->XferOptions != I2C_NEXT_FRAME)
{
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
/* Enable Pos */
hi2c->Instance->CR1 |= I2C_CR1_POS;
}
else
{
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
}
/* Disable BUF interrupt */
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_BUF);
}
else
{
if(hi2c->XferOptions != I2C_NEXT_FRAME)
{
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
}
else
{
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
}
/* Disable EVT, BUF and ERR interrupt */
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferCount--;
hi2c->State = HAL_I2C_STATE_READY;
hi2c->PreviousState = I2C_STATE_NONE;
if(hi2c->Mode == HAL_I2C_MODE_MEM)
{
hi2c->Mode = HAL_I2C_MODE_NONE;
HAL_I2C_MemRxCpltCallback(hi2c);
}
else
{
hi2c->Mode = HAL_I2C_MODE_NONE;
HAL_I2C_MasterRxCpltCallback(hi2c);
}
}
}
return HAL_OK;
}
/**
* @brief Handle BTF flag for Master receiver
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_MasterReceive_BTF(I2C_HandleTypeDef *hi2c)
{
/* Declaration of temporary variables to prevent undefined behavior of volatile usage */
uint32_t CurrentXferOptions = hi2c->XferOptions;
if(hi2c->XferCount == 3U)
{
if((CurrentXferOptions == I2C_FIRST_AND_LAST_FRAME) || (CurrentXferOptions == I2C_LAST_FRAME) || (CurrentXferOptions == I2C_NO_OPTION_FRAME))
{
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
}
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferCount--;
}
else if(hi2c->XferCount == 2U)
{
/* Prepare next transfer or stop current transfer */
if((CurrentXferOptions != I2C_FIRST_AND_LAST_FRAME) && (CurrentXferOptions != I2C_LAST_FRAME) && (CurrentXferOptions != I2C_NO_OPTION_FRAME))
{
if(CurrentXferOptions != I2C_NEXT_FRAME)
{
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
}
else
{
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
}
/* Disable EVT and ERR interrupt */
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
}
else
{
/* Disable EVT and ERR interrupt */
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
}
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferCount--;
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferCount--;
hi2c->State = HAL_I2C_STATE_READY;
hi2c->PreviousState = I2C_STATE_NONE;
if(hi2c->Mode == HAL_I2C_MODE_MEM)
{
hi2c->Mode = HAL_I2C_MODE_NONE;
HAL_I2C_MemRxCpltCallback(hi2c);
}
else
{
hi2c->Mode = HAL_I2C_MODE_NONE;
HAL_I2C_MasterRxCpltCallback(hi2c);
}
}
else
{
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferCount--;
}
return HAL_OK;
}
/**
* @brief Handle SB flag for Master
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_Master_SB(I2C_HandleTypeDef *hi2c)
{
if(hi2c->Mode == HAL_I2C_MODE_MEM)
{
if(hi2c->EventCount == 0U)
{
/* Send slave address */
hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(hi2c->Devaddress);
}
else
{
hi2c->Instance->DR = I2C_7BIT_ADD_READ(hi2c->Devaddress);
}
}
else
{
if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT)
{
/* Send slave 7 Bits address */
if(hi2c->State == HAL_I2C_STATE_BUSY_TX)
{
hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(hi2c->Devaddress);
}
else
{
hi2c->Instance->DR = I2C_7BIT_ADD_READ(hi2c->Devaddress);
}
}
else
{
if(hi2c->EventCount == 0U)
{
/* Send header of slave address */
hi2c->Instance->DR = I2C_10BIT_HEADER_WRITE(hi2c->Devaddress);
}
else if(hi2c->EventCount == 1U)
{
/* Send header of slave address */
hi2c->Instance->DR = I2C_10BIT_HEADER_READ(hi2c->Devaddress);
}
}
}
return HAL_OK;
}
/**
* @brief Handle ADD10 flag for Master
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_Master_ADD10(I2C_HandleTypeDef *hi2c)
{
/* Send slave address */
hi2c->Instance->DR = I2C_10BIT_ADDRESS(hi2c->Devaddress);
return HAL_OK;
}
/**
* @brief Handle ADDR flag for Master
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_Master_ADDR(I2C_HandleTypeDef *hi2c)
{
/* Declaration of temporary variable to prevent undefined behavior of volatile usage */
uint32_t CurrentMode = hi2c->Mode;
uint32_t CurrentXferOptions = hi2c->XferOptions;
uint32_t Prev_State = hi2c->PreviousState;
if(hi2c->State == HAL_I2C_STATE_BUSY_RX)
{
if((hi2c->EventCount == 0U) && (CurrentMode == HAL_I2C_MODE_MEM))
{
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
}
else if((hi2c->EventCount == 0U) && (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT))
{
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Generate Restart */
hi2c->Instance->CR1 |= I2C_CR1_START;
hi2c->EventCount++;
}
else
{
if(hi2c->XferCount == 0U)
{
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
}
else if(hi2c->XferCount == 1U)
{
if(CurrentXferOptions == I2C_NO_OPTION_FRAME)
{
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
if((hi2c->Instance->CR2 & I2C_CR2_DMAEN) == I2C_CR2_DMAEN)
{
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
}
else
{
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
}
}
/* Prepare next transfer or stop current transfer */
else if((CurrentXferOptions != I2C_FIRST_AND_LAST_FRAME) && (CurrentXferOptions != I2C_LAST_FRAME) \
&& (Prev_State != I2C_STATE_MASTER_BUSY_RX))
{
if(hi2c->XferOptions != I2C_NEXT_FRAME)
{
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
}
else
{
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
}
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
}
else
{
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
}
}
else if(hi2c->XferCount == 2U)
{
if(hi2c->XferOptions != I2C_NEXT_FRAME)
{
/* Enable Pos */
hi2c->Instance->CR1 |= I2C_CR1_POS;
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
}
else
{
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
}
if((hi2c->Instance->CR2 & I2C_CR2_DMAEN) == I2C_CR2_DMAEN)
{
/* Enable Last DMA bit */
hi2c->Instance->CR2 |= I2C_CR2_LAST;
}
}
else
{
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
if((hi2c->Instance->CR2 & I2C_CR2_DMAEN) == I2C_CR2_DMAEN)
{
/* Enable Last DMA bit */
hi2c->Instance->CR2 |= I2C_CR2_LAST;
}
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
}
/* Reset Event counter */
hi2c->EventCount = 0U;
}
}
else
{
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
}
return HAL_OK;
}
/**
* @brief Handle TXE flag for Slave
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_SlaveTransmit_TXE(I2C_HandleTypeDef *hi2c)
{
/* Declaration of temporary variables to prevent undefined behavior of volatile usage */
uint32_t CurrentState = hi2c->State;
if(hi2c->XferCount != 0U)
{
/* Write data to DR */
hi2c->Instance->DR = (*hi2c->pBuffPtr++);
hi2c->XferCount--;
if((hi2c->XferCount == 0U) && (CurrentState == HAL_I2C_STATE_BUSY_TX_LISTEN))
{
/* Last Byte is received, disable Interrupt */
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_BUF);
/* Set state at HAL_I2C_STATE_LISTEN */
hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_TX;
hi2c->State = HAL_I2C_STATE_LISTEN;
/* Call the Tx complete callback to inform upper layer of the end of receive process */
HAL_I2C_SlaveTxCpltCallback(hi2c);
}
}
return HAL_OK;
}
/**
* @brief Handle BTF flag for Slave transmitter
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_SlaveTransmit_BTF(I2C_HandleTypeDef *hi2c)
{
if(hi2c->XferCount != 0U)
{
/* Write data to DR */
hi2c->Instance->DR = (*hi2c->pBuffPtr++);
hi2c->XferCount--;
}
return HAL_OK;
}
/**
* @brief Handle RXNE flag for Slave
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_SlaveReceive_RXNE(I2C_HandleTypeDef *hi2c)
{
/* Declaration of temporary variables to prevent undefined behavior of volatile usage */
uint32_t CurrentState = hi2c->State;
if(hi2c->XferCount != 0U)
{
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferCount--;
if((hi2c->XferCount == 0U) && (CurrentState == HAL_I2C_STATE_BUSY_RX_LISTEN))
{
/* Last Byte is received, disable Interrupt */
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_BUF);
/* Set state at HAL_I2C_STATE_LISTEN */
hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_RX;
hi2c->State = HAL_I2C_STATE_LISTEN;
/* Call the Rx complete callback to inform upper layer of the end of receive process */
HAL_I2C_SlaveRxCpltCallback(hi2c);
}
}
return HAL_OK;
}
/**
* @brief Handle BTF flag for Slave receiver
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_SlaveReceive_BTF(I2C_HandleTypeDef *hi2c)
{
if(hi2c->XferCount != 0U)
{
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferCount--;
}
return HAL_OK;
}
/**
* @brief Handle ADD flag for Slave
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_Slave_ADDR(I2C_HandleTypeDef *hi2c)
{
uint8_t TransferDirection = I2C_DIRECTION_RECEIVE;
uint16_t SlaveAddrCode = 0U;
/* Transfer Direction requested by Master */
if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TRA) == RESET)
{
TransferDirection = I2C_DIRECTION_TRANSMIT;
}
if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_DUALF) == RESET)
{
SlaveAddrCode = hi2c->Init.OwnAddress1;
}
else
{
SlaveAddrCode = hi2c->Init.OwnAddress2;
}
/* Call Slave Addr callback */
HAL_I2C_AddrCallback(hi2c, TransferDirection, SlaveAddrCode);
return HAL_OK;
}
/**
* @brief Handle STOPF flag for Slave
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_Slave_STOPF(I2C_HandleTypeDef *hi2c)
{
/* Declaration of temporary variable to prevent undefined behavior of volatile usage */
uint32_t CurrentState = hi2c->State;
/* Disable EVT, BUF and ERR interrupt */
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
/* Clear STOPF flag */
__HAL_I2C_CLEAR_STOPFLAG(hi2c);
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
/* If a DMA is ongoing, Update handle size context */
if((hi2c->Instance->CR2 & I2C_CR2_DMAEN) == I2C_CR2_DMAEN)
{
if((hi2c->State == HAL_I2C_STATE_BUSY_RX) || (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN))
{
hi2c->XferCount = __HAL_DMA_GET_COUNTER(hi2c->hdmarx);
}
else
{
hi2c->XferCount = __HAL_DMA_GET_COUNTER(hi2c->hdmatx);
}
}
/* All data are not transferred, so set error code accordingly */
if(hi2c->XferCount != 0U)
{
/* Store Last receive data if any */
if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET)
{
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferCount--;
}
/* Store Last receive data if any */
if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET)
{
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
hi2c->XferCount--;
}
/* Set ErrorCode corresponding to a Non-Acknowledge */
hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
}
if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
{
/* Call the corresponding callback to inform upper layer of End of Transfer */
I2C_ITError(hi2c);
}
else
{
if((CurrentState == HAL_I2C_STATE_LISTEN ) || (CurrentState == HAL_I2C_STATE_BUSY_RX_LISTEN) || \
(CurrentState == HAL_I2C_STATE_BUSY_TX_LISTEN))
{
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
/* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */
HAL_I2C_ListenCpltCallback(hi2c);
}
else
{
if((hi2c->PreviousState == I2C_STATE_SLAVE_BUSY_RX) || (CurrentState == HAL_I2C_STATE_BUSY_RX))
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
HAL_I2C_SlaveRxCpltCallback(hi2c);
}
}
}
return HAL_OK;
}
/**
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_Slave_AF(I2C_HandleTypeDef *hi2c)
{
/* Declaration of temporary variables to prevent undefined behavior of volatile usage */
uint32_t CurrentState = hi2c->State;
uint32_t CurrentXferOptions = hi2c->XferOptions;
if(((CurrentXferOptions == I2C_FIRST_AND_LAST_FRAME) || (CurrentXferOptions == I2C_LAST_FRAME)) && \
(CurrentState == HAL_I2C_STATE_LISTEN))
{
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
/* Disable EVT, BUF and ERR interrupt */
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
/* Clear AF flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
/* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */
HAL_I2C_ListenCpltCallback(hi2c);
}
else if(CurrentState == HAL_I2C_STATE_BUSY_TX)
{
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_TX;
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
/* Disable EVT, BUF and ERR interrupt */
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
/* Clear AF flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
HAL_I2C_SlaveTxCpltCallback(hi2c);
}
else
{
/* Clear AF flag only */
/* State Listen, but XferOptions == FIRST or NEXT */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
}
return HAL_OK;
}
/**
* @brief I2C interrupts error process
* @param hi2c I2C handle.
* @retval None
*/
static void I2C_ITError(I2C_HandleTypeDef *hi2c)
{
/* Declaration of temporary variable to prevent undefined behavior of volatile usage */
uint32_t CurrentState = hi2c->State;
if((CurrentState == HAL_I2C_STATE_BUSY_TX_LISTEN) || (CurrentState == HAL_I2C_STATE_BUSY_RX_LISTEN))
{
/* keep HAL_I2C_STATE_LISTEN */
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State = HAL_I2C_STATE_LISTEN;
}
else
{
/* If state is an abort treatment on going, don't change state */
/* This change will be do later */
if((hi2c->State != HAL_I2C_STATE_ABORT) && ((hi2c->Instance->CR2 & I2C_CR2_DMAEN) != I2C_CR2_DMAEN))
{
hi2c->State = HAL_I2C_STATE_READY;
}
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->Mode = HAL_I2C_MODE_NONE;
}
/* Disable Pos bit in I2C CR1 when error occurred in Master/Mem Receive IT Process */
hi2c->Instance->CR1 &= ~I2C_CR1_POS;
/* Abort DMA transfer */
if((hi2c->Instance->CR2 & I2C_CR2_DMAEN) == I2C_CR2_DMAEN)
{
hi2c->Instance->CR2 &= ~I2C_CR2_DMAEN;
if(hi2c->hdmatx->State != HAL_DMA_STATE_READY)
{
/* Set the DMA Abort callback :
will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */
hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort;
if(HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK)
{
/* Disable I2C peripheral to prevent dummy data in buffer */
__HAL_I2C_DISABLE(hi2c);
hi2c->State = HAL_I2C_STATE_READY;
/* Call Directly XferAbortCallback function in case of error */
hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx);
}
}
else
{
/* Set the DMA Abort callback :
will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */
hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort;
if(HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK)
{
/* Store Last receive data if any */
if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET)
{
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
}
/* Disable I2C peripheral to prevent dummy data in buffer */
__HAL_I2C_DISABLE(hi2c);
hi2c->State = HAL_I2C_STATE_READY;
/* Call Directly hi2c->hdmarx->XferAbortCallback function in case of error */
hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx);
}
}
}
else if(hi2c->State == HAL_I2C_STATE_ABORT)
{
hi2c->State = HAL_I2C_STATE_READY;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Store Last receive data if any */
if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET)
{
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
}
/* Disable I2C peripheral to prevent dummy data in buffer */
__HAL_I2C_DISABLE(hi2c);
/* Call the corresponding callback to inform upper layer of End of Transfer */
HAL_I2C_AbortCpltCallback(hi2c);
}
else
{
/* Store Last receive data if any */
if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET)
{
/* Read data from DR */
(*hi2c->pBuffPtr++) = hi2c->Instance->DR;
}
/* Call user error callback */
HAL_I2C_ErrorCallback(hi2c);
}
/* STOP Flag is not set after a NACK reception */
/* So may inform upper layer that listen phase is stopped */
/* during NACK error treatment */
if((hi2c->State == HAL_I2C_STATE_LISTEN) && ((hi2c->ErrorCode & HAL_I2C_ERROR_AF) == HAL_I2C_ERROR_AF))
{
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
/* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */
HAL_I2C_ListenCpltCallback(hi2c);
}
}
/**
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shift at right before call interface
* @param Timeout Timeout duration
* @param Tickstart Tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_MasterRequestWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Timeout, uint32_t Tickstart)
{
/* Declaration of temporary variable to prevent undefined behavior of volatile usage */
uint32_t CurrentXferOptions = hi2c->XferOptions;
/* Generate Start condition if first transfer */
if((CurrentXferOptions == I2C_FIRST_AND_LAST_FRAME) || (CurrentXferOptions == I2C_FIRST_FRAME) || (CurrentXferOptions == I2C_NO_OPTION_FRAME))
{
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
}
else if(hi2c->PreviousState == I2C_STATE_MASTER_BUSY_RX)
{
/* Generate ReStart */
hi2c->Instance->CR1 |= I2C_CR1_START;
}
/* Wait until SB flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout, Tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT)
{
/* Send slave address */
hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(DevAddress);
}
else
{
/* Send header of slave address */
hi2c->Instance->DR = I2C_10BIT_HEADER_WRITE(DevAddress);
/* Wait until ADD10 flag is set */
if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADD10, Timeout, Tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* Send slave address */
hi2c->Instance->DR = I2C_10BIT_ADDRESS(DevAddress);
}
/* Wait until ADDR flag is set */
if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout, Tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Master sends target device address for read request.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shift at right before call interface
* @param Timeout Timeout duration
* @param Tickstart Tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_MasterRequestRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Timeout, uint32_t Tickstart)
{
/* Declaration of temporary variable to prevent undefined behavior of volatile usage */
uint32_t CurrentXferOptions = hi2c->XferOptions;
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Generate Start condition if first transfer */
if((CurrentXferOptions == I2C_FIRST_AND_LAST_FRAME) || (CurrentXferOptions == I2C_FIRST_FRAME) || (CurrentXferOptions == I2C_NO_OPTION_FRAME))
{
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
}
else if(hi2c->PreviousState == I2C_STATE_MASTER_BUSY_TX)
{
/* Generate ReStart */
hi2c->Instance->CR1 |= I2C_CR1_START;
}
/* Wait until SB flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout, Tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT)
{
/* Send slave address */
hi2c->Instance->DR = I2C_7BIT_ADD_READ(DevAddress);
}
else
{
/* Send header of slave address */
hi2c->Instance->DR = I2C_10BIT_HEADER_WRITE(DevAddress);
/* Wait until ADD10 flag is set */
if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADD10, Timeout, Tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* Send slave address */
hi2c->Instance->DR = I2C_10BIT_ADDRESS(DevAddress);
/* Wait until ADDR flag is set */
if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout, Tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Generate Restart */
hi2c->Instance->CR1 |= I2C_CR1_START;
/* Wait until SB flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout, Tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Send header of slave address */
hi2c->Instance->DR = I2C_10BIT_HEADER_READ(DevAddress);
}
/* Wait until ADDR flag is set */
if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout, Tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Master sends target device address followed by internal memory address for write request.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @param DevAddress Target device address
* @param MemAddress Internal memory address
* @param MemAddSize Size of internal memory address
* @param Timeout Timeout duration
* @param Tickstart Tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart)
{
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
/* Wait until SB flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout, Tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Send slave address */
hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(DevAddress);
/* Wait until ADDR flag is set */
if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout, Tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Wait until TXE flag is set */
if(I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* If Memory address size is 8Bit */
if(MemAddSize == I2C_MEMADD_SIZE_8BIT)
{
/* Send Memory Address */
hi2c->Instance->DR = I2C_MEM_ADD_LSB(MemAddress);
}
/* If Memory address size is 16Bit */
else
{
/* Send MSB of Memory Address */
hi2c->Instance->DR = I2C_MEM_ADD_MSB(MemAddress);
/* Wait until TXE flag is set */
if(I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* Send LSB of Memory Address */
hi2c->Instance->DR = I2C_MEM_ADD_LSB(MemAddress);
}
return HAL_OK;
}
/**
* @brief Master sends target device address followed by internal memory address for read request.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @param DevAddress Target device address
* @param MemAddress Internal memory address
* @param MemAddSize Size of internal memory address
* @param Timeout Timeout duration
* @param Tickstart Tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart)
{
/* Enable Acknowledge */
hi2c->Instance->CR1 |= I2C_CR1_ACK;
/* Generate Start */
hi2c->Instance->CR1 |= I2C_CR1_START;
/* Wait until SB flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout, Tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Send slave address */
hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(DevAddress);
/* Wait until ADDR flag is set */
if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout, Tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* Clear ADDR flag */
__HAL_I2C_CLEAR_ADDRFLAG(hi2c);
/* Wait until TXE flag is set */
if(I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* If Memory address size is 8Bit */
if(MemAddSize == I2C_MEMADD_SIZE_8BIT)
{
/* Send Memory Address */
hi2c->Instance->DR = I2C_MEM_ADD_LSB(MemAddress);
}
/* If Memory address size is 16Bit */
else
{
/* Send MSB of Memory Address */
hi2c->Instance->DR = I2C_MEM_ADD_MSB(MemAddress);
/* Wait until TXE flag is set */
if(I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* Send LSB of Memory Address */
hi2c->Instance->DR = I2C_MEM_ADD_LSB(MemAddress);
}
/* Wait until TXE flag is set */
if(I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
/* Generate Restart */
hi2c->Instance->CR1 |= I2C_CR1_START;
/* Wait until SB flag is set */
if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout, Tickstart) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Send slave address */
hi2c->Instance->DR = I2C_7BIT_ADD_READ(DevAddress);
/* Wait until ADDR flag is set */
if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout, Tickstart) != HAL_OK)
{
if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
{
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief DMA I2C process complete callback.
* @param hdma DMA handle
* @retval None
*/
static void I2C_DMAXferCplt(DMA_HandleTypeDef *hdma)
{
I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
/* Declaration of temporary variable to prevent undefined behavior of volatile usage */
uint32_t CurrentState = hi2c->State;
uint32_t CurrentMode = hi2c->Mode;
if((CurrentState == HAL_I2C_STATE_BUSY_TX) || ((CurrentState == HAL_I2C_STATE_BUSY_RX) && (CurrentMode == HAL_I2C_MODE_SLAVE)))
{
/* Disable DMA Request */
hi2c->Instance->CR2 &= ~I2C_CR2_DMAEN;
hi2c->XferCount = 0U;
/* Enable EVT and ERR interrupt */
__HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
}
else
{
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
/* Disable Last DMA */
hi2c->Instance->CR2 &= ~I2C_CR2_LAST;
/* Disable DMA Request */
hi2c->Instance->CR2 &= ~I2C_CR2_DMAEN;
hi2c->XferCount = 0U;
/* Check if Errors has been detected during transfer */
if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
{
HAL_I2C_ErrorCallback(hi2c);
}
else
{
hi2c->State = HAL_I2C_STATE_READY;
if(hi2c->Mode == HAL_I2C_MODE_MEM)
{
hi2c->Mode = HAL_I2C_MODE_NONE;
HAL_I2C_MemRxCpltCallback(hi2c);
}
else
{
hi2c->Mode = HAL_I2C_MODE_NONE;
HAL_I2C_MasterRxCpltCallback(hi2c);
}
}
}
}
/**
* @brief DMA I2C communication error callback.
* @param hdma DMA handle
* @retval None
*/
static void I2C_DMAError(DMA_HandleTypeDef *hdma)
{
I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
hi2c->XferCount = 0U;
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
hi2c->ErrorCode |= HAL_I2C_ERROR_DMA;
HAL_I2C_ErrorCallback(hi2c);
}
/**
* @brief DMA I2C communication abort callback
* (To be called at end of DMA Abort procedure).
* @param hdma: DMA handle.
* @retval None
*/
static void I2C_DMAAbort(DMA_HandleTypeDef *hdma)
{
I2C_HandleTypeDef* hi2c = ( I2C_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Disable Acknowledge */
hi2c->Instance->CR1 &= ~I2C_CR1_ACK;
hi2c->XferCount = 0U;
/* Reset XferAbortCallback */
hi2c->hdmatx->XferAbortCallback = NULL;
hi2c->hdmarx->XferAbortCallback = NULL;
/* Check if come from abort from user */
if(hi2c->State == HAL_I2C_STATE_ABORT)
{
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Disable I2C peripheral to prevent dummy data in buffer */
__HAL_I2C_DISABLE(hi2c);
/* Call the corresponding callback to inform upper layer of End of Transfer */
HAL_I2C_AbortCpltCallback(hi2c);
}
else
{
hi2c->State = HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
/* Disable I2C peripheral to prevent dummy data in buffer */
__HAL_I2C_DISABLE(hi2c);
/* Call the corresponding callback to inform upper layer of End of Transfer */
HAL_I2C_ErrorCallback(hi2c);
}
}
/**
* @brief This function handles I2C Communication Timeout.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @param Flag specifies the I2C flag to check.
* @param Status The new Flag status (SET or RESET).
* @param Timeout Timeout duration
* @param Tickstart Tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t Tickstart)
{
/* Wait until flag is set */
while((__HAL_I2C_GET_FLAG(hi2c, Flag) ? SET : RESET) == Status)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U)||((HAL_GetTick() - Tickstart ) > Timeout))
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
hi2c->Mode = HAL_I2C_MODE_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @brief This function handles I2C Communication Timeout for Master addressing phase.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for I2C module
* @param Flag specifies the I2C flag to check.
* @param Timeout Timeout duration
* @param Tickstart Tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_WaitOnMasterAddressFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, uint32_t Timeout, uint32_t Tickstart)
{
while(__HAL_I2C_GET_FLAG(hi2c, Flag) == RESET)
{
if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET)
{
/* Generate Stop */
hi2c->Instance->CR1 |= I2C_CR1_STOP;
/* Clear AF Flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
hi2c->ErrorCode = HAL_I2C_ERROR_AF;
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_ERROR;
}
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U)||((HAL_GetTick() - Tickstart ) > Timeout))
{
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @brief This function handles I2C Communication Timeout for specific usage of TXE flag.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param Timeout Timeout duration
* @param Tickstart Tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_WaitOnTXEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart)
{
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXE) == RESET)
{
/* Check if a NACK is detected */
if(I2C_IsAcknowledgeFailed(hi2c) != HAL_OK)
{
return HAL_ERROR;
}
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U) || ((HAL_GetTick()-Tickstart) > Timeout))
{
hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @brief This function handles I2C Communication Timeout for specific usage of BTF flag.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param Timeout Timeout duration
* @param Tickstart Tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_WaitOnBTFFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart)
{
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == RESET)
{
/* Check if a NACK is detected */
if(I2C_IsAcknowledgeFailed(hi2c) != HAL_OK)
{
return HAL_ERROR;
}
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U) || ((HAL_GetTick()-Tickstart) > Timeout))
{
hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @brief This function handles I2C Communication Timeout for specific usage of STOP flag.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param Timeout Timeout duration
* @param Tickstart Tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart)
{
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET)
{
/* Check if a NACK is detected */
if(I2C_IsAcknowledgeFailed(hi2c) != HAL_OK)
{
return HAL_ERROR;
}
/* Check for the Timeout */
if((Timeout == 0U) || ((HAL_GetTick()-Tickstart) > Timeout))
{
hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief This function handles I2C Communication Timeout for specific usage of RXNE flag.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param Timeout Timeout duration
* @param Tickstart Tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart)
{
while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == RESET)
{
/* Check if a STOPF is detected */
if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET)
{
/* Clear STOP Flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_ERROR;
}
/* Check for the Timeout */
if((Timeout == 0U) || ((HAL_GetTick()-Tickstart) > Timeout))
{
hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief This function handles Acknowledge failed detection during an I2C Communication.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval HAL status
*/
static HAL_StatusTypeDef I2C_IsAcknowledgeFailed(I2C_HandleTypeDef *hi2c)
{
if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET)
{
/* Clear NACKF Flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
hi2c->ErrorCode = HAL_I2C_ERROR_AF;
hi2c->PreviousState = I2C_STATE_NONE;
hi2c->State= HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_ERROR;
}
return HAL_OK;
}
/**
* @}
*/
#endif /* HAL_I2C_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/