hoverboard-firmware-hack-fo.../Src/util.c

1414 lines
57 KiB
C

/**
* This file is part of the hoverboard-firmware-hack project.
*
* Copyright (C) 2020-2021 Emanuel FERU <aerdronix@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Includes
#include <stdlib.h> // for abs()
#include <string.h>
#include "stm32f1xx_hal.h"
#include "defines.h"
#include "setup.h"
#include "config.h"
#include "comms.h"
#include "eeprom.h"
#include "util.h"
#include "BLDC_controller.h"
#include "rtwtypes.h"
#if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD)
#include "hd44780.h"
#endif
/* =========================== Variable Definitions =========================== */
//------------------------------------------------------------------------
// Global variables set externally
//------------------------------------------------------------------------
extern volatile adc_buf_t adc_buffer;
extern I2C_HandleTypeDef hi2c2;
extern UART_HandleTypeDef huart2;
extern UART_HandleTypeDef huart3;
extern int16_t batVoltage;
extern uint8_t backwardDrive;
extern uint8_t buzzerFreq; // global variable for the buzzer pitch. can be 1, 2, 3, 4, 5, 6, 7...
extern uint8_t buzzerPattern; // global variable for the buzzer pattern. can be 1, 2, 3, 4, 5, 6, 7...
extern uint8_t enable; // global variable for motor enable
extern uint8_t nunchuk_data[6];
extern volatile uint32_t timeoutCnt; // global variable for general timeout counter
extern volatile uint32_t main_loop_counter;
#if defined(CONTROL_PPM_LEFT) || defined(CONTROL_PPM_RIGHT)
extern volatile uint16_t ppm_captured_value[PPM_NUM_CHANNELS+1];
#endif
#if defined(CONTROL_PWM_LEFT) || defined(CONTROL_PWM_RIGHT)
extern volatile uint16_t pwm_captured_ch1_value;
extern volatile uint16_t pwm_captured_ch2_value;
#endif
//------------------------------------------------------------------------
// Global variables set here in util.c
//------------------------------------------------------------------------
// Matlab defines - from auto-code generation
//---------------
RT_MODEL rtM_Left_; /* Real-time model */
RT_MODEL rtM_Right_; /* Real-time model */
RT_MODEL *const rtM_Left = &rtM_Left_;
RT_MODEL *const rtM_Right = &rtM_Right_;
extern P rtP_Left; /* Block parameters (auto storage) */
DW rtDW_Left; /* Observable states */
ExtU rtU_Left; /* External inputs */
ExtY rtY_Left; /* External outputs */
P rtP_Right; /* Block parameters (auto storage) */
DW rtDW_Right; /* Observable states */
ExtU rtU_Right; /* External inputs */
ExtY rtY_Right; /* External outputs */
//---------------
int16_t cmd1; // normalized input value. -1000 to 1000
int16_t cmd2; // normalized input value. -1000 to 1000
int16_t speedAvg; // average measured speed
int16_t speedAvgAbs; // average measured speed in absolute
uint8_t timeoutFlagADC = 0; // Timeout Flag for ADC Protection: 0 = OK, 1 = Problem detected (line disconnected or wrong ADC data)
uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
uint8_t ctrlModReqRaw = CTRL_MOD_REQ;
uint8_t ctrlModReq = CTRL_MOD_REQ; // Final control mode request
#if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD)
LCD_PCF8574_HandleTypeDef lcd;
#endif
#if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK)
uint8_t nunchuk_connected = 1;
#else
uint8_t nunchuk_connected = 0;
#endif
#ifdef VARIANT_TRANSPOTTER
float setDistance;
uint16_t VirtAddVarTab[NB_OF_VAR] = {0x1337}; // Virtual address defined by the user: 0xFFFF value is prohibited
static uint16_t saveValue = 0;
static uint8_t saveValue_valid = 0;
#elif defined(CONTROL_ADC)
uint16_t VirtAddVarTab[NB_OF_VAR] = {0x1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308};
#else
uint16_t VirtAddVarTab[NB_OF_VAR] = {0x1300}; // Dummy virtual address to avoid warnings
#endif
//------------------------------------------------------------------------
// Local variables
//------------------------------------------------------------------------
static int16_t INPUT_MAX; // [-] Input target maximum limitation
static int16_t INPUT_MIN; // [-] Input target minimum limitation
#ifdef CONTROL_ADC
static uint8_t cur_spd_valid = 0;
static uint8_t adc_cal_valid = 0;
static uint16_t ADC1_MIN_CAL = ADC1_MIN;
static uint16_t ADC1_MAX_CAL = ADC1_MAX;
static uint16_t ADC2_MIN_CAL = ADC2_MIN;
static uint16_t ADC2_MAX_CAL = ADC2_MAX;
#ifdef ADC1_MID_POT
static uint16_t ADC1_MID_CAL = ADC1_MID;
#else
static uint16_t ADC1_MID_CAL = 0;
#endif
#ifdef ADC1_MID_POT
static uint16_t ADC2_MID_CAL = ADC2_MID;
#else
static uint16_t ADC2_MID_CAL = 0;
#endif
#endif
#if defined(CONTROL_ADC) && defined(ADC_PROTECT_ENA)
static int16_t timeoutCntADC = 0; // Timeout counter for ADC Protection
#endif
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
static uint8_t rx_buffer_L[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
static uint32_t rx_buffer_L_len = ARRAY_LEN(rx_buffer_L);
#endif
#if defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
static uint16_t timeoutCntSerial_L = 0; // Timeout counter for Rx Serial command
static uint8_t timeoutFlagSerial_L = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
#endif
#if defined(SIDEBOARD_SERIAL_USART2)
SerialSideboard Sideboard_L;
SerialSideboard Sideboard_L_raw;
static uint32_t Sideboard_L_len = sizeof(Sideboard_L);
#endif
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
static uint8_t rx_buffer_R[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
static uint32_t rx_buffer_R_len = ARRAY_LEN(rx_buffer_R);
#endif
#if defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
static uint16_t timeoutCntSerial_R = 0; // Timeout counter for Rx Serial command
static uint8_t timeoutFlagSerial_R = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
#endif
#if defined(SIDEBOARD_SERIAL_USART3)
SerialSideboard Sideboard_R;
SerialSideboard Sideboard_R_raw;
static uint32_t Sideboard_R_len = sizeof(Sideboard_R);
#endif
#if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
static SerialCommand command;
static SerialCommand command_raw;
static uint32_t command_len = sizeof(command);
#ifdef CONTROL_IBUS
static uint16_t ibus_chksum;
static uint16_t ibus_captured_value[IBUS_NUM_CHANNELS];
#endif
#endif
#if defined(SUPPORT_BUTTONS) || defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT)
static uint8_t button1; // Blue
static uint8_t button2; // Green
#endif
#ifdef VARIANT_HOVERCAR
static uint8_t brakePressed;
#endif
/* =========================== Initialization Functions =========================== */
void BLDC_Init(void) {
/* Set BLDC controller parameters */
rtP_Left.b_angleMeasEna = 0; // Motor angle input: 0 = estimated angle, 1 = measured angle (e.g. if encoder is available)
rtP_Left.z_selPhaCurMeasABC = 0; // Left motor measured current phases {Green, Blue} = {iA, iB} -> do NOT change
rtP_Left.z_ctrlTypSel = CTRL_TYP_SEL;
rtP_Left.b_diagEna = DIAG_ENA;
rtP_Left.i_max = (I_MOT_MAX * A2BIT_CONV) << 4; // fixdt(1,16,4)
rtP_Left.n_max = N_MOT_MAX << 4; // fixdt(1,16,4)
rtP_Left.b_fieldWeakEna = FIELD_WEAK_ENA;
rtP_Left.id_fieldWeakMax = (FIELD_WEAK_MAX * A2BIT_CONV) << 4; // fixdt(1,16,4)
rtP_Left.a_phaAdvMax = PHASE_ADV_MAX << 4; // fixdt(1,16,4)
rtP_Left.r_fieldWeakHi = FIELD_WEAK_HI << 4; // fixdt(1,16,4)
rtP_Left.r_fieldWeakLo = FIELD_WEAK_LO << 4; // fixdt(1,16,4)
rtP_Right = rtP_Left; // Copy the Left motor parameters to the Right motor parameters
rtP_Right.z_selPhaCurMeasABC = 1; // Right motor measured current phases {Blue, Yellow} = {iB, iC} -> do NOT change
/* Pack LEFT motor data into RTM */
rtM_Left->defaultParam = &rtP_Left;
rtM_Left->dwork = &rtDW_Left;
rtM_Left->inputs = &rtU_Left;
rtM_Left->outputs = &rtY_Left;
/* Pack RIGHT motor data into RTM */
rtM_Right->defaultParam = &rtP_Right;
rtM_Right->dwork = &rtDW_Right;
rtM_Right->inputs = &rtU_Right;
rtM_Right->outputs = &rtY_Right;
/* Initialize BLDC controllers */
BLDC_controller_initialize(rtM_Left);
BLDC_controller_initialize(rtM_Right);
}
void Input_Lim_Init(void) { // Input Limitations - ! Do NOT touch !
if (rtP_Left.b_fieldWeakEna || rtP_Right.b_fieldWeakEna) {
INPUT_MAX = MAX( 1000, FIELD_WEAK_HI);
INPUT_MIN = MIN(-1000,-FIELD_WEAK_HI);
} else {
INPUT_MAX = 1000;
INPUT_MIN = -1000;
}
}
void Input_Init(void) {
#if defined(CONTROL_PPM_LEFT) || defined(CONTROL_PPM_RIGHT)
PPM_Init();
#endif
#if defined(CONTROL_PWM_LEFT) || defined(CONTROL_PWM_RIGHT)
PWM_Init();
#endif
#ifdef CONTROL_NUNCHUK
I2C_Init();
Nunchuk_Init();
#endif
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
UART2_Init();
#endif
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(FEEDBACK_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
UART3_Init();
#endif
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
HAL_UART_Receive_DMA(&huart2, (uint8_t *)rx_buffer_L, sizeof(rx_buffer_L));
UART_DisableRxErrors(&huart2);
#endif
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
HAL_UART_Receive_DMA(&huart3, (uint8_t *)rx_buffer_R, sizeof(rx_buffer_R));
UART_DisableRxErrors(&huart3);
#endif
#ifdef CONTROL_ADC
uint16_t writeCheck, i_max, n_max;
HAL_FLASH_Unlock();
EE_Init(); /* EEPROM Init */
EE_ReadVariable(VirtAddVarTab[0], &writeCheck);
if (writeCheck == FLASH_WRITE_KEY) {
EE_ReadVariable(VirtAddVarTab[1], &ADC1_MIN_CAL);
EE_ReadVariable(VirtAddVarTab[2], &ADC1_MAX_CAL);
EE_ReadVariable(VirtAddVarTab[3], &ADC1_MID_CAL);
EE_ReadVariable(VirtAddVarTab[4], &ADC2_MIN_CAL);
EE_ReadVariable(VirtAddVarTab[5], &ADC2_MAX_CAL);
EE_ReadVariable(VirtAddVarTab[6], &ADC2_MID_CAL);
EE_ReadVariable(VirtAddVarTab[7], &i_max);
EE_ReadVariable(VirtAddVarTab[8], &n_max);
rtP_Left.i_max = i_max;
rtP_Left.n_max = n_max;
rtP_Right.i_max = i_max;
rtP_Right.n_max = n_max;
}
HAL_FLASH_Lock();
#endif
#ifdef VARIANT_TRANSPOTTER
enable = 1;
HAL_FLASH_Unlock();
EE_Init(); /* EEPROM Init */
EE_ReadVariable(VirtAddVarTab[0], &saveValue);
HAL_FLASH_Lock();
setDistance = saveValue / 1000.0;
if (setDistance < 0.2) {
setDistance = 1.0;
}
#endif
#if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD)
I2C_Init();
HAL_Delay(50);
lcd.pcf8574.PCF_I2C_ADDRESS = 0x27;
lcd.pcf8574.PCF_I2C_TIMEOUT = 5;
lcd.pcf8574.i2c = hi2c2;
lcd.NUMBER_OF_LINES = NUMBER_OF_LINES_2;
lcd.type = TYPE0;
if(LCD_Init(&lcd)!=LCD_OK) {
// error occured
//TODO while(1);
}
LCD_ClearDisplay(&lcd);
HAL_Delay(5);
LCD_SetLocation(&lcd, 0, 0);
#ifdef VARIANT_TRANSPOTTER
LCD_WriteString(&lcd, "TranspOtter V2.1");
#else
LCD_WriteString(&lcd, "Hover V2.0");
#endif
LCD_SetLocation(&lcd, 0, 1); LCD_WriteString(&lcd, "Initializing...");
#endif
#if defined(VARIANT_TRANSPOTTER) && defined(SUPPORT_LCD)
LCD_ClearDisplay(&lcd);
HAL_Delay(5);
LCD_SetLocation(&lcd, 0, 1); LCD_WriteString(&lcd, "Bat:");
LCD_SetLocation(&lcd, 8, 1); LCD_WriteString(&lcd, "V");
LCD_SetLocation(&lcd, 15, 1); LCD_WriteString(&lcd, "A");
LCD_SetLocation(&lcd, 0, 0); LCD_WriteString(&lcd, "Len:");
LCD_SetLocation(&lcd, 8, 0); LCD_WriteString(&lcd, "m(");
LCD_SetLocation(&lcd, 14, 0); LCD_WriteString(&lcd, "m)");
#endif
}
/**
* @brief Disable Rx Errors detection interrupts on UART peripheral (since we do not want DMA to be stopped)
* The incorrect data will be filtered based on the START_FRAME and checksum.
* @param huart: UART handle.
* @retval None
*/
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) || \
defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
void UART_DisableRxErrors(UART_HandleTypeDef *huart)
{
/* Disable PE (Parity Error) interrupts */
CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
/* Disable EIE (Frame error, noise error, overrun error) interrupts */
CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
}
#endif
/* =========================== General Functions =========================== */
void poweronMelody(void) {
for (int i = 8; i >= 0; i--) {
buzzerFreq = (uint8_t)i;
HAL_Delay(100);
}
buzzerFreq = 0;
}
void shortBeep(uint8_t freq) {
buzzerFreq = freq;
HAL_Delay(100);
buzzerFreq = 0;
}
void shortBeepMany(uint8_t cnt, int8_t dir) {
if (dir >= 0) { // increasing tone
for(uint8_t i = 2*cnt; i >= 2; i=i-2) {
shortBeep(i + 3);
}
} else { // decreasing tone
for(uint8_t i = 2; i <= 2*cnt; i=i+2) {
shortBeep(i + 3);
}
}
}
void longBeep(uint8_t freq) {
buzzerFreq = freq;
HAL_Delay(500);
buzzerFreq = 0;
}
void calcAvgSpeed(void) {
// Calculate measured average speed. The minus sign (-) is because motors spin in opposite directions
#if !defined(INVERT_L_DIRECTION) && !defined(INVERT_R_DIRECTION)
speedAvg = ( rtY_Left.n_mot - rtY_Right.n_mot) / 2;
#elif !defined(INVERT_L_DIRECTION) && defined(INVERT_R_DIRECTION)
speedAvg = ( rtY_Left.n_mot + rtY_Right.n_mot) / 2;
#elif defined(INVERT_L_DIRECTION) && !defined(INVERT_R_DIRECTION)
speedAvg = (-rtY_Left.n_mot - rtY_Right.n_mot) / 2;
#elif defined(INVERT_L_DIRECTION) && defined(INVERT_R_DIRECTION)
speedAvg = (-rtY_Left.n_mot + rtY_Right.n_mot) / 2;
#endif
// Handle the case when SPEED_COEFFICIENT sign is negative (which is when most significant bit is 1)
if (SPEED_COEFFICIENT & (1 << 16)) {
speedAvg = -speedAvg;
}
speedAvgAbs = abs(speedAvg);
}
/*
* Auto-calibration of the ADC Limits
* This function finds the Minimum, Maximum, and Middle for the ADC input
* Procedure:
* - press the power button for more than 5 sec and release after the beep sound
* - move the potentiometers freely to the min and max limits repeatedly
* - release potentiometers to the resting postion
* - press the power button to confirm or wait for the 20 sec timeout
*/
void adcCalibLim(void) {
if (speedAvgAbs > 5) { // do not enter this mode if motors are spinning
return;
}
#ifdef CONTROL_ADC
consoleLog("ADC calibration started... ");
// Inititalization: MIN = a high values, MAX = a low value,
int32_t adc1_fixdt = adc_buffer.l_tx2 << 16;
int32_t adc2_fixdt = adc_buffer.l_rx2 << 16;
uint16_t adc_cal_timeout = 0;
uint16_t ADC1_MIN_temp = 4095;
uint16_t ADC1_MID_temp = 0;
uint16_t ADC1_MAX_temp = 0;
uint16_t ADC2_MIN_temp = 4095;
uint16_t ADC2_MID_temp = 0;
uint16_t ADC2_MAX_temp = 0;
adc_cal_valid = 1;
// Extract MIN, MAX and MID from ADC while the power button is not pressed
while (!HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN) && adc_cal_timeout++ < 4000) { // 20 sec timeout
filtLowPass32(adc_buffer.l_tx2, FILTER, &adc1_fixdt);
filtLowPass32(adc_buffer.l_rx2, FILTER, &adc2_fixdt);
ADC1_MID_temp = (uint16_t)CLAMP(adc1_fixdt >> 16, 0, 4095); // convert fixed-point to integer
ADC2_MID_temp = (uint16_t)CLAMP(adc2_fixdt >> 16, 0, 4095);
ADC1_MIN_temp = MIN(ADC1_MIN_temp, ADC1_MID_temp);
ADC1_MAX_temp = MAX(ADC1_MAX_temp, ADC1_MID_temp);
ADC2_MIN_temp = MIN(ADC2_MIN_temp, ADC2_MID_temp);
ADC2_MAX_temp = MAX(ADC2_MAX_temp, ADC2_MID_temp);
HAL_Delay(5);
}
// ADC calibration checks
#ifdef ADC_PROTECT_ENA
if ((ADC1_MIN_temp + 100 - ADC_PROTECT_THRESH) > 0 && (ADC1_MAX_temp - 100 + ADC_PROTECT_THRESH) < 4095 &&
(ADC2_MIN_temp + 100 - ADC_PROTECT_THRESH) > 0 && (ADC2_MAX_temp - 100 + ADC_PROTECT_THRESH) < 4095) {
adc_cal_valid = 1;
} else {
adc_cal_valid = 0;
consoleLog("FAIL (ADC out-of-range protection not possible)\n");
}
#endif
// Add final ADC margin to have exact 0 and MAX at the minimum and maximum ADC value
if (adc_cal_valid && (ADC1_MAX_temp - ADC1_MIN_temp) > 500 && (ADC2_MAX_temp - ADC2_MIN_temp) > 500) {
ADC1_MIN_CAL = ADC1_MIN_temp + 100;
ADC1_MID_CAL = ADC1_MID_temp;
ADC1_MAX_CAL = ADC1_MAX_temp - 100;
ADC2_MIN_CAL = ADC2_MIN_temp + 100;
ADC2_MID_CAL = ADC2_MID_temp;
ADC2_MAX_CAL = ADC2_MAX_temp - 100;
consoleLog("OK\n");
} else {
adc_cal_valid = 0;
consoleLog("FAIL (Pots travel too short)\n");
}
#endif
}
/*
* Update Maximum Motor Current Limit (via ADC1) and Maximum Speed Limit (via ADC2)
* Procedure:
* - press the power button for more than 5 sec and immediatelly after the beep sound press one more time shortly
* - move and hold the pots to a desired limit position for Current and Speed
* - press the power button to confirm or wait for the 10 sec timeout
*/
void updateCurSpdLim(void) {
if (speedAvgAbs > 5) { // do not enter this mode if motors are spinning
return;
}
#ifdef CONTROL_ADC
consoleLog("Torque and Speed limits update started... ");
int32_t adc1_fixdt = adc_buffer.l_tx2 << 16;
int32_t adc2_fixdt = adc_buffer.l_rx2 << 16;
uint16_t cur_spd_timeout = 0;
uint16_t cur_factor; // fixdt(0,16,16)
uint16_t spd_factor; // fixdt(0,16,16)
// Wait for the power button press
while (!HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN) && cur_spd_timeout++ < 2000) { // 10 sec timeout
filtLowPass32(adc_buffer.l_tx2, FILTER, &adc1_fixdt);
filtLowPass32(adc_buffer.l_rx2, FILTER, &adc2_fixdt);
HAL_Delay(5);
}
// Calculate scaling factors
cur_factor = CLAMP((adc1_fixdt - (ADC1_MIN_CAL << 16)) / (ADC1_MAX_CAL - ADC1_MIN_CAL), 6553, 65535); // ADC1, MIN_cur(10%) = 1.5 A
spd_factor = CLAMP((adc2_fixdt - (ADC2_MIN_CAL << 16)) / (ADC2_MAX_CAL - ADC2_MIN_CAL), 3276, 65535); // ADC2, MIN_spd(5%) = 50 rpm
// Update maximum limits
rtP_Left.i_max = (int16_t)((I_MOT_MAX * A2BIT_CONV * cur_factor) >> 12); // fixdt(0,16,16) to fixdt(1,16,4)
rtP_Left.n_max = (int16_t)((N_MOT_MAX * spd_factor) >> 12); // fixdt(0,16,16) to fixdt(1,16,4)
rtP_Right.i_max = rtP_Left.i_max;
rtP_Right.n_max = rtP_Left.n_max;
cur_spd_valid = 1;
consoleLog("OK\n");
#endif
}
/*
* Save Configuration to Flash
* This function makes sure data is not lost after power-off
*/
void saveConfig() {
#ifdef VARIANT_TRANSPOTTER
if (saveValue_valid) {
HAL_FLASH_Unlock();
EE_WriteVariable(VirtAddVarTab[0], saveValue);
HAL_FLASH_Lock();
}
#endif
#ifdef CONTROL_ADC
if (adc_cal_valid || cur_spd_valid) {
HAL_FLASH_Unlock();
EE_WriteVariable(VirtAddVarTab[0], FLASH_WRITE_KEY);
EE_WriteVariable(VirtAddVarTab[1], ADC1_MIN_CAL);
EE_WriteVariable(VirtAddVarTab[2], ADC1_MAX_CAL);
EE_WriteVariable(VirtAddVarTab[3], ADC1_MID_CAL);
EE_WriteVariable(VirtAddVarTab[4], ADC2_MIN_CAL);
EE_WriteVariable(VirtAddVarTab[5], ADC2_MAX_CAL);
EE_WriteVariable(VirtAddVarTab[6], ADC2_MID_CAL);
EE_WriteVariable(VirtAddVarTab[7], rtP_Left.i_max);
EE_WriteVariable(VirtAddVarTab[8], rtP_Left.n_max);
HAL_FLASH_Lock();
}
#endif
}
/*
* Add Dead-band to a signal
* This function realizes a dead-band around 0 and scales the input between [out_min, out_max]
*/
int addDeadBand(int16_t u, int16_t deadBand, int16_t in_min, int16_t in_mid, int16_t in_max, int16_t out_min, int16_t out_max) {
if(u > in_mid - deadBand && u < in_mid + deadBand) {
return 0;
} else if(u > 0) {
return MAP(u, in_mid + deadBand, in_max, 0, out_max);
} else {
return MAP(u, in_mid - deadBand, in_min, out_min, 0);
}
}
/*
* Standstill Hold Function
* This function will switch to SPEED mode at standstill to provide an anti-roll functionality.
* Only available and makes sense for VOLTAGE or TORQUE mode.
*
* Input: pointer *speedCmd
* Output: modified Control Mode Request
*/
void standstillHold(int16_t *speedCmd) {
#if defined(STANDSTILL_HOLD_ENABLE) && (CTRL_TYP_SEL == FOC_CTRL) && (CTRL_MOD_REQ != SPD_MODE)
if (*speedCmd > -20 && *speedCmd < 20) { // If speedCmd (Throttle) is small
if (ctrlModReqRaw != SPD_MODE && speedAvgAbs < 3) { // and If measured speed is small (meaning we are at standstill)
ctrlModReqRaw = SPD_MODE; // Switch to Speed mode
}
if (ctrlModReqRaw == SPD_MODE) { // If we are in Speed mode
*speedCmd = 0; // Request standstill (0 rpm)
}
} else if (ctrlModReqRaw != CTRL_MOD_REQ && (*speedCmd < -50 || *speedCmd > 50)) { // Else if speedCmd (Throttle) becomes significant
ctrlModReqRaw = CTRL_MOD_REQ; // Follow the Mode request
}
#endif
}
/*
* Electric Brake Function
* In case of TORQUE mode, this function replaces the motor "freewheel" with a constant braking when the input torque request is 0.
* This is useful when a small amount of motor braking is desired instead of "freewheel".
*
* Input: speedBlend = fixdt(0,16,15), reverseDir = {0, 1}
* Output: cmd2 (Throtle) with brake component included
*/
void electricBrake(uint16_t speedBlend, uint8_t reverseDir) {
#if defined(ELECTRIC_BRAKE_ENABLE) && (CTRL_TYP_SEL == FOC_CTRL) && (CTRL_MOD_REQ == TRQ_MODE)
int16_t brakeVal;
// Make sure the Brake pedal is opposite to the direction of motion AND it goes to 0 as we reach standstill (to avoid Reverse driving)
if (speedAvg > 0) {
brakeVal = (int16_t)((-ELECTRIC_BRAKE_MAX * speedBlend) >> 15);
} else {
brakeVal = (int16_t)(( ELECTRIC_BRAKE_MAX * speedBlend) >> 15);
}
// Check if direction is reversed
if (reverseDir) {
brakeVal = -brakeVal;
}
// Calculate the new cmd2 with brake component included
if (cmd2 >= 0 && cmd2 < ELECTRIC_BRAKE_THRES) {
cmd2 = MAX(brakeVal, ((ELECTRIC_BRAKE_THRES - cmd2) * brakeVal) / ELECTRIC_BRAKE_THRES);
} else if (cmd2 >= -ELECTRIC_BRAKE_THRES && cmd2 < 0) {
cmd2 = MIN(brakeVal, ((ELECTRIC_BRAKE_THRES + cmd2) * brakeVal) / ELECTRIC_BRAKE_THRES);
} else if (cmd2 >= ELECTRIC_BRAKE_THRES) {
cmd2 = MAX(brakeVal, ((cmd2 - ELECTRIC_BRAKE_THRES) * INPUT_MAX) / (INPUT_MAX - ELECTRIC_BRAKE_THRES));
} else { // when (cmd2 < -ELECTRIC_BRAKE_THRES)
cmd2 = MIN(brakeVal, ((cmd2 + ELECTRIC_BRAKE_THRES) * INPUT_MIN) / (INPUT_MIN + ELECTRIC_BRAKE_THRES));
}
#endif
}
/*
* Cruise Control Function
* This function activates/deactivates cruise control.
*
* Input: button (as a pulse)
* Output: none
*/
void cruiseControl(uint8_t button) {
#ifdef CRUISE_CONTROL_SUPPORT
if (button && !rtP_Left.b_cruiseCtrlEna) { // Cruise control activated
rtP_Left.n_cruiseMotTgt = rtY_Left.n_mot;
rtP_Right.n_cruiseMotTgt = rtY_Right.n_mot;
rtP_Left.b_cruiseCtrlEna = 1;
rtP_Right.b_cruiseCtrlEna = 1;
shortBeepMany(2, 1); // 200 ms beep delay. Acts as a debounce also.
} else if (button && rtP_Left.b_cruiseCtrlEna) { // Cruise control deactivated
rtP_Left.b_cruiseCtrlEna = 0;
rtP_Right.b_cruiseCtrlEna = 0;
shortBeepMany(2, -1);
}
#endif
}
/* =========================== Poweroff Functions =========================== */
void poweroff(void) {
buzzerPattern = 0;
enable = 0;
consoleLog("-- Motors disabled --\r\n");
for (int i = 0; i < 8; i++) {
buzzerFreq = (uint8_t)i;
HAL_Delay(100);
}
saveConfig();
HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, GPIO_PIN_RESET);
while(1) {}
}
void poweroffPressCheck(void) {
#if defined(CONTROL_ADC)
if(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {
enable = 0;
uint16_t cnt_press = 0;
while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {
HAL_Delay(10);
if (cnt_press++ == 5 * 100) { shortBeep(5); }
}
if (cnt_press >= 5 * 100) { // Check if press is more than 5 sec
HAL_Delay(300);
if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { // Double press: Adjust Max Current, Max Speed
while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { HAL_Delay(10); }
longBeep(8);
updateCurSpdLim();
shortBeep(5);
} else { // Long press: Calibrate ADC Limits
longBeep(16);
adcCalibLim();
shortBeep(5);
}
} else { // Short press: power off
poweroff();
}
}
#elif defined(VARIANT_TRANSPOTTER)
if(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {
enable = 0;
while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { HAL_Delay(10); }
shortBeep(5);
HAL_Delay(300);
if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {
while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { HAL_Delay(10); }
longBeep(5);
HAL_Delay(350);
poweroff();
} else {
setDistance += 0.25;
if (setDistance > 2.6) {
setDistance = 0.5;
}
shortBeep(setDistance / 0.25);
saveValue = setDistance * 1000;
saveValue_valid = 1;
}
}
#else
if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {
enable = 0; // disable motors
while (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {} // wait until button is released
poweroff(); // release power-latch
}
#endif
}
/* =========================== Read Command Function =========================== */
void readCommand(void) {
#if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK)
if (nunchuk_connected != 0) {
Nunchuk_Read();
cmd1 = CLAMP((nunchuk_data[0] - 127) * 8, INPUT_MIN, INPUT_MAX); // x - axis. Nunchuk joystick readings range 30 - 230
cmd2 = CLAMP((nunchuk_data[1] - 128) * 8, INPUT_MIN, INPUT_MAX); // y - axis
#ifdef SUPPORT_BUTTONS
button1 = (uint8_t)nunchuk_data[5] & 1;
button2 = (uint8_t)(nunchuk_data[5] >> 1) & 1;
#endif
}
#endif
#if defined(CONTROL_PPM_LEFT) || defined(CONTROL_PPM_RIGHT)
cmd1 = addDeadBand((ppm_captured_value[0] - 500) * 2, PPM_DEADBAND, PPM_CH1_MIN, 0, PPM_CH1_MAX, INPUT_MIN, INPUT_MAX);
cmd2 = addDeadBand((ppm_captured_value[1] - 500) * 2, PPM_DEADBAND, PPM_CH2_MIN, 0, PPM_CH2_MAX, INPUT_MIN, INPUT_MAX);
#ifdef SUPPORT_BUTTONS
button1 = ppm_captured_value[5] > 500;
button2 = 0;
#elif defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT)
button1 = !HAL_GPIO_ReadPin(BUTTON1_PORT, BUTTON1_PIN);
button2 = !HAL_GPIO_ReadPin(BUTTON2_PORT, BUTTON2_PIN);
#endif
// float scale = ppm_captured_value[2] / 1000.0f; // not used for now, uncomment if needed
#endif
#if defined(CONTROL_PWM_LEFT) || defined(CONTROL_PWM_RIGHT)
cmd1 = addDeadBand((pwm_captured_ch1_value - 500) * 2, PWM_DEADBAND, PWM_CH1_MIN, 0, PWM_CH1_MAX, INPUT_MIN, INPUT_MAX);
#if !defined(VARIANT_SKATEBOARD)
cmd2 = addDeadBand((pwm_captured_ch2_value - 500) * 2, PWM_DEADBAND, PWM_CH2_MIN, 0, PWM_CH2_MAX, INPUT_MIN, INPUT_MAX);
#else
cmd2 = addDeadBand((pwm_captured_ch2_value - 500) * 2, PWM_DEADBAND, PWM_CH2_MIN, 0, PWM_CH2_MAX, PWM_CH2_OUT_MIN, INPUT_MAX);
#endif
#if defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT)
button1 = !HAL_GPIO_ReadPin(BUTTON1_PORT, BUTTON1_PIN);
button2 = !HAL_GPIO_ReadPin(BUTTON2_PORT, BUTTON2_PIN);
#endif
#endif
#ifdef CONTROL_ADC
// ADC values range: 0-4095, see ADC-calibration in config.h
#ifdef ADC1_MID_POT
cmd1 = addDeadBand(adc_buffer.l_tx2, ADC_DEADBAND, ADC1_MIN_CAL, ADC1_MID_CAL, ADC1_MAX_CAL, INPUT_MIN, INPUT_MAX);
#else
cmd1 = CLAMP((adc_buffer.l_tx2 - ADC1_MIN_CAL) * INPUT_MAX / (ADC1_MAX_CAL - ADC1_MIN_CAL), 0, INPUT_MAX); // ADC1
#endif
#ifdef ADC2_MID_POT
cmd2 = addDeadBand(adc_buffer.l_rx2, ADC_DEADBAND, ADC2_MIN_CAL, ADC2_MID_CAL, ADC2_MAX_CAL, INPUT_MIN, INPUT_MAX);
#else
cmd2 = CLAMP((adc_buffer.l_rx2 - ADC2_MIN_CAL) * INPUT_MAX / (ADC2_MAX_CAL - ADC2_MIN_CAL), 0, INPUT_MAX); // ADC2
#endif
#ifdef ADC_PROTECT_ENA
if (adc_buffer.l_tx2 >= (ADC1_MIN_CAL - ADC_PROTECT_THRESH) && adc_buffer.l_tx2 <= (ADC1_MAX_CAL + ADC_PROTECT_THRESH) &&
adc_buffer.l_rx2 >= (ADC2_MIN_CAL - ADC_PROTECT_THRESH) && adc_buffer.l_rx2 <= (ADC2_MAX_CAL + ADC_PROTECT_THRESH)) {
if (timeoutFlagADC) { // Check for previous timeout flag
if (timeoutCntADC-- <= 0) // Timeout de-qualification
timeoutFlagADC = 0; // Timeout flag cleared
} else {
timeoutCntADC = 0; // Reset the timeout counter
}
} else {
if (timeoutCntADC++ >= ADC_PROTECT_TIMEOUT) { // Timeout qualification
timeoutFlagADC = 1; // Timeout detected
timeoutCntADC = ADC_PROTECT_TIMEOUT; // Limit timout counter value
}
}
#endif
#if defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT)
button1 = !HAL_GPIO_ReadPin(BUTTON1_PORT, BUTTON1_PIN);
button2 = !HAL_GPIO_ReadPin(BUTTON2_PORT, BUTTON2_PIN);
#endif
timeoutCnt = 0;
#endif
#if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
// Handle received data validity, timeout and fix out-of-sync if necessary
#ifdef CONTROL_IBUS
for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i+=2) {
ibus_captured_value[(i/2)] = CLAMP(command.channels[i] + (command.channels[i+1] << 8) - 1000, 0, INPUT_MAX); // 1000-2000 -> 0-1000
}
cmd1 = CLAMP((ibus_captured_value[0] - 500) * 2, INPUT_MIN, INPUT_MAX);
cmd2 = CLAMP((ibus_captured_value[1] - 500) * 2, INPUT_MIN, INPUT_MAX);
#else
if (IN_RANGE(command.steer, INPUT_MIN, INPUT_MAX) && IN_RANGE(command.speed, INPUT_MIN, INPUT_MAX)) {
cmd1 = command.steer;
cmd2 = command.speed;
}
#endif
#if defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT)
button1 = !HAL_GPIO_ReadPin(BUTTON1_PORT, BUTTON1_PIN);
button2 = !HAL_GPIO_ReadPin(BUTTON2_PORT, BUTTON2_PIN);
#endif
timeoutCnt = 0;
#endif
#if defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
if (timeoutCntSerial_L++ >= SERIAL_TIMEOUT) { // Timeout qualification
timeoutFlagSerial_L = 1; // Timeout detected
timeoutCntSerial_L = SERIAL_TIMEOUT; // Limit timout counter value
}
timeoutFlagSerial = timeoutFlagSerial_L;
#endif
#if defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
if (timeoutCntSerial_R++ >= SERIAL_TIMEOUT) { // Timeout qualification
timeoutFlagSerial_R = 1; // Timeout detected
timeoutCntSerial_R = SERIAL_TIMEOUT; // Limit timout counter value
}
timeoutFlagSerial = timeoutFlagSerial_R;
#endif
#if defined(SIDEBOARD_SERIAL_USART2) && defined(SIDEBOARD_SERIAL_USART3)
timeoutFlagSerial = timeoutFlagSerial_L || timeoutFlagSerial_R;
#endif
#ifdef VARIANT_HOVERCAR
brakePressed = (uint8_t)(cmd1 > 50);
#endif
#ifdef VARIANT_TRANSPOTTER
#ifdef GAMETRAK_CONNECTION_NORMAL
cmd1 = adc_buffer.l_rx2;
cmd2 = adc_buffer.l_tx2;
#endif
#ifdef GAMETRAK_CONNECTION_ALTERNATE
cmd1 = adc_buffer.l_tx2;
cmd2 = adc_buffer.l_rx2;
#endif
#endif
if (timeoutFlagADC || timeoutFlagSerial || timeoutCnt > TIMEOUT) { // In case of timeout bring the system to a Safe State
ctrlModReq = OPEN_MODE; // Request OPEN_MODE. This will bring the motor power to 0 in a controlled way
cmd1 = 0;
cmd2 = 0;
} else {
ctrlModReq = ctrlModReqRaw; // Follow the Mode request
}
#if defined(CRUISE_CONTROL_SUPPORT) && (defined(SUPPORT_BUTTONS) || defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT))
cruiseControl(button1); // Cruise control activation/deactivation
#endif
}
/*
* Check for new data received on USART2 with DMA: refactored function from https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx
* - this function is called for every USART IDLE line detection, in the USART interrupt handler
*/
void usart2_rx_check(void)
{
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
static uint32_t old_pos;
uint32_t pos;
pos = rx_buffer_L_len - __HAL_DMA_GET_COUNTER(huart2.hdmarx); // Calculate current position in buffer
#endif
#if defined(DEBUG_SERIAL_USART2)
if (pos != old_pos) { // Check change in received data
if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one
usart_process_debug(&rx_buffer_L[old_pos], pos - old_pos); // Process data
} else { // "Overflow" buffer mode
usart_process_debug(&rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First Process data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
usart_process_debug(&rx_buffer_L[0], pos); // Process remaining data
}
}
}
#endif // DEBUG_SERIAL_USART2
#ifdef CONTROL_SERIAL_USART2
uint8_t *ptr;
if (pos != old_pos) { // Check change in received data
ptr = (uint8_t *)&command_raw; // Initialize the pointer with command_raw address
if (pos > old_pos && (pos - old_pos) == command_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
memcpy(ptr, &rx_buffer_L[old_pos], command_len); // Copy data. This is possible only if command_raw is contiguous! (meaning all the structure members have the same size)
usart_process_command(&command_raw, &command, 2); // Process data
} else if ((rx_buffer_L_len - old_pos + pos) == command_len) { // "Overflow" buffer mode: check if data length equals expected length
memcpy(ptr, &rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First copy data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
ptr += rx_buffer_L_len - old_pos; // Move to correct position in command_raw
memcpy(ptr, &rx_buffer_L[0], pos); // Copy remaining data
}
usart_process_command(&command_raw, &command, 2); // Process data
}
}
#endif // CONTROL_SERIAL_USART2
#ifdef SIDEBOARD_SERIAL_USART2
uint8_t *ptr;
if (pos != old_pos) { // Check change in received data
ptr = (uint8_t *)&Sideboard_L_raw; // Initialize the pointer with Sideboard_raw address
if (pos > old_pos && (pos - old_pos) == Sideboard_L_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
memcpy(ptr, &rx_buffer_L[old_pos], Sideboard_L_len); // Copy data. This is possible only if Sideboard_raw is contiguous! (meaning all the structure members have the same size)
usart_process_sideboard(&Sideboard_L_raw, &Sideboard_L, 2); // Process data
} else if ((rx_buffer_L_len - old_pos + pos) == Sideboard_L_len) { // "Overflow" buffer mode: check if data length equals expected length
memcpy(ptr, &rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First copy data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
ptr += rx_buffer_L_len - old_pos; // Move to correct position in Sideboard_raw
memcpy(ptr, &rx_buffer_L[0], pos); // Copy remaining data
}
usart_process_sideboard(&Sideboard_L_raw, &Sideboard_L, 2); // Process data
}
}
#endif // SIDEBOARD_SERIAL_USART2
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
old_pos = pos; // Update old position
if (old_pos == rx_buffer_L_len) { // Check and manually update if we reached end of buffer
old_pos = 0;
}
#endif
}
/*
* Check for new data received on USART3 with DMA: refactored function from https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx
* - this function is called for every USART IDLE line detection, in the USART interrupt handler
*/
void usart3_rx_check(void)
{
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
static uint32_t old_pos;
uint32_t pos;
pos = rx_buffer_R_len - __HAL_DMA_GET_COUNTER(huart3.hdmarx); // Calculate current position in buffer
#endif
#if defined(DEBUG_SERIAL_USART3)
if (pos != old_pos) { // Check change in received data
if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one
usart_process_debug(&rx_buffer_R[old_pos], pos - old_pos); // Process data
} else { // "Overflow" buffer mode
usart_process_debug(&rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First Process data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
usart_process_debug(&rx_buffer_R[0], pos); // Process remaining data
}
}
}
#endif // DEBUG_SERIAL_USART3
#ifdef CONTROL_SERIAL_USART3
uint8_t *ptr;
if (pos != old_pos) { // Check change in received data
ptr = (uint8_t *)&command_raw; // Initialize the pointer with command_raw address
if (pos > old_pos && (pos - old_pos) == command_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
memcpy(ptr, &rx_buffer_R[old_pos], command_len); // Copy data. This is possible only if command_raw is contiguous! (meaning all the structure members have the same size)
usart_process_command(&command_raw, &command, 3); // Process data
} else if ((rx_buffer_R_len - old_pos + pos) == command_len) { // "Overflow" buffer mode: check if data length equals expected length
memcpy(ptr, &rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First copy data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
ptr += rx_buffer_R_len - old_pos; // Move to correct position in command_raw
memcpy(ptr, &rx_buffer_R[0], pos); // Copy remaining data
}
usart_process_command(&command_raw, &command, 3); // Process data
}
}
#endif // CONTROL_SERIAL_USART3
#ifdef SIDEBOARD_SERIAL_USART3
uint8_t *ptr;
if (pos != old_pos) { // Check change in received data
ptr = (uint8_t *)&Sideboard_R_raw; // Initialize the pointer with Sideboard_raw address
if (pos > old_pos && (pos - old_pos) == Sideboard_R_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
memcpy(ptr, &rx_buffer_R[old_pos], Sideboard_R_len); // Copy data. This is possible only if Sideboard_raw is contiguous! (meaning all the structure members have the same size)
usart_process_sideboard(&Sideboard_R_raw, &Sideboard_R, 3); // Process data
} else if ((rx_buffer_R_len - old_pos + pos) == Sideboard_R_len) { // "Overflow" buffer mode: check if data length equals expected length
memcpy(ptr, &rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First copy data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
ptr += rx_buffer_R_len - old_pos; // Move to correct position in Sideboard_raw
memcpy(ptr, &rx_buffer_R[0], pos); // Copy remaining data
}
usart_process_sideboard(&Sideboard_R_raw, &Sideboard_R, 3); // Process data
}
}
#endif // SIDEBOARD_SERIAL_USART3
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
old_pos = pos; // Update old position
if (old_pos == rx_buffer_R_len) { // Check and manually update if we reached end of buffer
old_pos = 0;
}
#endif
}
/*
* Process Rx debug user command input
*/
#if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3)
void usart_process_debug(uint8_t *userCommand, uint32_t len)
{
for (; len > 0; len--, userCommand++) {
if (*userCommand != '\n' && *userCommand != '\r') { // Do not accept 'new line' and 'carriage return' commands
consoleLog("-- Command received --\r\n");
// handle_input(*userCommand); // -> Create this function to handle the user commands
}
}
}
#endif // SERIAL_DEBUG
/*
* Process command Rx data
* - if the command_in data is valid (correct START_FRAME and checksum) copy the command_in to command_out
*/
#if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
void usart_process_command(SerialCommand *command_in, SerialCommand *command_out, uint8_t usart_idx)
{
#ifdef CONTROL_IBUS
if (command_in->start == IBUS_LENGTH && command_in->type == IBUS_COMMAND) {
ibus_chksum = 0xFFFF - IBUS_LENGTH - IBUS_COMMAND;
for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i++) {
ibus_chksum -= command_in->channels[i];
}
if (ibus_chksum == (uint16_t)((command_in->checksumh << 8) + command_in->checksuml)) {
*command_out = *command_in;
if (usart_idx == 2) { // Sideboard USART2
#ifdef CONTROL_SERIAL_USART2
timeoutCntSerial_L = 0; // Reset timeout counter
timeoutFlagSerial_L = 0; // Clear timeout flag
#endif
} else if (usart_idx == 3) { // Sideboard USART3
#ifdef CONTROL_SERIAL_USART3
timeoutCntSerial_R = 0; // Reset timeout counter
timeoutFlagSerial_R = 0; // Clear timeout flag
#endif
}
}
}
#else
uint16_t checksum;
if (command_in->start == SERIAL_START_FRAME) {
checksum = (uint16_t)(command_in->start ^ command_in->steer ^ command_in->speed);
if (command_in->checksum == checksum) {
*command_out = *command_in;
if (usart_idx == 2) { // Sideboard USART2
#ifdef CONTROL_SERIAL_USART2
timeoutCntSerial_L = 0; // Reset timeout counter
timeoutFlagSerial_L = 0; // Clear timeout flag
#endif
} else if (usart_idx == 3) { // Sideboard USART3
#ifdef CONTROL_SERIAL_USART3
timeoutCntSerial_R = 0; // Reset timeout counter
timeoutFlagSerial_R = 0; // Clear timeout flag
#endif
}
}
}
#endif
}
#endif
/*
* Process Sideboard Rx data
* - if the Sideboard_in data is valid (correct START_FRAME and checksum) copy the Sideboard_in to Sideboard_out
*/
#if defined(SIDEBOARD_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART3)
void usart_process_sideboard(SerialSideboard *Sideboard_in, SerialSideboard *Sideboard_out, uint8_t usart_idx)
{
uint16_t checksum;
if (Sideboard_in->start == SERIAL_START_FRAME) {
checksum = (uint16_t)(Sideboard_in->start ^ Sideboard_in->roll ^ Sideboard_in->pitch ^ Sideboard_in->yaw ^ Sideboard_in->sensors);
if (Sideboard_in->checksum == checksum) {
*Sideboard_out = *Sideboard_in;
if (usart_idx == 2) { // Sideboard USART2
#ifdef SIDEBOARD_SERIAL_USART2
timeoutCntSerial_L = 0; // Reset timeout counter
timeoutFlagSerial_L = 0; // Clear timeout flag
#endif
} else if (usart_idx == 3) { // Sideboard USART3
#ifdef SIDEBOARD_SERIAL_USART3
timeoutCntSerial_R = 0; // Reset timeout counter
timeoutFlagSerial_R = 0; // Clear timeout flag
#endif
}
}
}
}
#endif
/* =========================== Sideboard Functions =========================== */
/*
* Sideboard LEDs Handling
* This function manages the leds behavior connected to the sideboard
*/
void sideboardLeds(uint8_t *leds) {
#if defined(SIDEBOARD_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART3)
// Enable flag: use LED4 (bottom Blue)
// enable == 1, turn on led
// enable == 0, blink led
if (enable) {
*leds |= LED4_SET;
} else if (!enable && (main_loop_counter % 20 == 0)) {
*leds ^= LED4_SET;
}
// Backward Drive: use LED5 (upper Blue)
// backwardDrive == 1, blink led
// backwardDrive == 0, turn off led
if (backwardDrive && (main_loop_counter % 50 == 0)) {
*leds ^= LED5_SET;
}
// Brake: use LED5 (upper Blue)
// brakePressed == 1, turn on led
// brakePressed == 0, turn off led
#ifdef VARIANT_HOVERCAR
if (brakePressed) {
*leds |= LED5_SET;
} else if (!brakePressed && !backwardDrive) {
*leds &= ~LED5_SET;
}
#endif
// Battery Level Indicator: use LED1, LED2, LED3
if (main_loop_counter % BAT_BLINK_INTERVAL == 0) { // | RED (LED1) | YELLOW (LED3) | GREEN (LED2) |
if (batVoltage < BAT_DEAD) { // | 0 | 0 | 0 |
*leds &= ~LED1_SET & ~LED3_SET & ~LED2_SET;
} else if (batVoltage < BAT_LVL1) { // | B | 0 | 0 |
*leds ^= LED1_SET;
*leds &= ~LED3_SET & ~LED2_SET;
} else if (batVoltage < BAT_LVL2) { // | 1 | 0 | 0 |
*leds |= LED1_SET;
*leds &= ~LED3_SET & ~LED2_SET;
} else if (batVoltage < BAT_LVL3) { // | 0 | B | 0 |
*leds ^= LED3_SET;
*leds &= ~LED1_SET & ~LED2_SET;
} else if (batVoltage < BAT_LVL4) { // | 0 | 1 | 0 |
*leds |= LED3_SET;
*leds &= ~LED1_SET & ~LED2_SET;
} else if (batVoltage < BAT_LVL5) { // | 0 | 0 | B |
*leds ^= LED2_SET;
*leds &= ~LED1_SET & ~LED3_SET;
} else { // | 0 | 0 | 1 |
*leds |= LED2_SET;
*leds &= ~LED1_SET & ~LED3_SET;
}
}
// Error handling
// Critical error: LED1 on (RED) + high pitch beep (hadled in main)
// Soft error: LED3 on (YELLOW) + low pitch beep (hadled in main)
if (rtY_Left.z_errCode || rtY_Right.z_errCode) {
*leds |= LED1_SET;
*leds &= ~LED3_SET & ~LED2_SET;
}
if (timeoutFlagADC || timeoutFlagSerial) {
*leds |= LED3_SET;
*leds &= ~LED1_SET & ~LED2_SET;
}
#endif
}
/*
* Sideboard Sensor Handling
* This function manages the sideboards photo sensors.
* In non-hoverboard variants, the sensors are used as push buttons.
*/
void sideboardSensors(uint8_t sensors) {
#if !defined(VARIANT_HOVERBOARD) && (defined(SIDEBOARD_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART3))
static uint8_t sensor1_prev, sensor2_prev;
uint8_t sensor1_rising_edge, sensor2_rising_edge;
sensor1_rising_edge = (sensors & SENSOR1_SET) && !sensor1_prev;
sensor2_rising_edge = (sensors & SENSOR2_SET) && !sensor2_prev;
sensor1_prev = sensors & SENSOR1_SET;
sensor2_prev = sensors & SENSOR2_SET;
// Control MODE and Control Type Handling: use Sensor1 as push button
static uint8_t sensor1_index; // holds the press index number for sensor1, when used as a button
if (sensor1_rising_edge) {
sensor1_index++;
if (sensor1_index > 4) { sensor1_index = 0; }
switch (sensor1_index) {
case 0: // FOC VOLTAGE
rtP_Left.z_ctrlTypSel = FOC_CTRL;
rtP_Right.z_ctrlTypSel = FOC_CTRL;
ctrlModReqRaw = VLT_MODE;
break;
case 1: // FOC SPEED
ctrlModReqRaw = SPD_MODE;
break;
case 2: // FOC TORQUE
ctrlModReqRaw = TRQ_MODE;
break;
case 3: // SINUSOIDAL
rtP_Left.z_ctrlTypSel = SIN_CTRL;
rtP_Right.z_ctrlTypSel = SIN_CTRL;
break;
case 4: // COMMUTATION
rtP_Left.z_ctrlTypSel = COM_CTRL;
rtP_Right.z_ctrlTypSel = COM_CTRL;
break;
}
shortBeepMany(sensor1_index + 1, 1);
}
// Field Weakening: use Sensor2 as push button
#ifdef CRUISE_CONTROL_SUPPORT
if (sensor2_rising_edge) {
cruiseControl(sensor2_rising_edge);
}
#else
static uint8_t sensor2_index; // holds the press index number for sensor2, when used as a button
if (sensor2_rising_edge) {
sensor2_index++;
if (sensor2_index > 1) { sensor2_index = 0; }
switch (sensor2_index) {
case 0: // FW Disabled
rtP_Left.b_fieldWeakEna = 0;
rtP_Right.b_fieldWeakEna = 0;
Input_Lim_Init();
break;
case 1: // FW Enabled
rtP_Left.b_fieldWeakEna = 1;
rtP_Right.b_fieldWeakEna = 1;
Input_Lim_Init();
break;
}
shortBeepMany(sensor2_index + 1, 1);
}
#endif // CRUISE_CONTROL_SUPPORT
#endif
}
/* =========================== Filtering Functions =========================== */
/* Low pass filter fixed-point 32 bits: fixdt(1,32,16)
* Max: 32767.99998474121
* Min: -32768
* Res: 1.52587890625e-05
*
* Inputs: u = int16 or int32
* Outputs: y = fixdt(1,32,16)
* Parameters: coef = fixdt(0,16,16) = [0,65535U]
*
* Example:
* If coef = 0.8 (in floating point), then coef = 0.8 * 2^16 = 52429 (in fixed-point)
* filtLowPass16(u, 52429, &y);
* yint = (int16_t)(y >> 16); // the integer output is the fixed-point ouput shifted by 16 bits
*/
void filtLowPass32(int32_t u, uint16_t coef, int32_t *y) {
int64_t tmp;
tmp = ((int64_t)((u << 4) - (*y >> 12)) * coef) >> 4;
tmp = CLAMP(tmp, -2147483648LL, 2147483647LL); // Overflow protection: 2147483647LL = 2^31 - 1
*y = (int32_t)tmp + (*y);
}
// Old filter
// Inputs: u = int16
// Outputs: y = fixdt(1,32,20)
// Parameters: coef = fixdt(0,16,16) = [0,65535U]
// yint = (int16_t)(y >> 20); // the integer output is the fixed-point ouput shifted by 20 bits
// void filtLowPass32(int16_t u, uint16_t coef, int32_t *y) {
// int32_t tmp;
// tmp = (int16_t)(u << 4) - (*y >> 16);
// tmp = CLAMP(tmp, -32768, 32767); // Overflow protection
// *y = coef * tmp + (*y);
// }
/* rateLimiter16(int16_t u, int16_t rate, int16_t *y);
* Inputs: u = int16
* Outputs: y = fixdt(1,16,4)
* Parameters: rate = fixdt(1,16,4) = [0, 32767] Do NOT make rate negative (>32767)
*/
void rateLimiter16(int16_t u, int16_t rate, int16_t *y) {
int16_t q0;
int16_t q1;
q0 = (u << 4) - *y;
if (q0 > rate) {
q0 = rate;
} else {
q1 = -rate;
if (q0 < q1) {
q0 = q1;
}
}
*y = q0 + *y;
}
/* mixerFcn(rtu_speed, rtu_steer, &rty_speedR, &rty_speedL);
* Inputs: rtu_speed, rtu_steer = fixdt(1,16,4)
* Outputs: rty_speedR, rty_speedL = int16_t
* Parameters: SPEED_COEFFICIENT, STEER_COEFFICIENT = fixdt(0,16,14)
*/
void mixerFcn(int16_t rtu_speed, int16_t rtu_steer, int16_t *rty_speedR, int16_t *rty_speedL) {
int16_t prodSpeed;
int16_t prodSteer;
int32_t tmp;
prodSpeed = (int16_t)((rtu_speed * (int16_t)SPEED_COEFFICIENT) >> 14);
prodSteer = (int16_t)((rtu_steer * (int16_t)STEER_COEFFICIENT) >> 14);
tmp = prodSpeed - prodSteer;
tmp = CLAMP(tmp, -32768, 32767); // Overflow protection
*rty_speedR = (int16_t)(tmp >> 4); // Convert from fixed-point to int
*rty_speedR = CLAMP(*rty_speedR, INPUT_MIN, INPUT_MAX);
tmp = prodSpeed + prodSteer;
tmp = CLAMP(tmp, -32768, 32767); // Overflow protection
*rty_speedL = (int16_t)(tmp >> 4); // Convert from fixed-point to int
*rty_speedL = CLAMP(*rty_speedL, INPUT_MIN, INPUT_MAX);
}
/* =========================== Multiple Tap Function =========================== */
/* multipleTapDet(int16_t u, uint32_t timeNow, MultipleTap *x)
* This function detects multiple tap presses, such as double tapping, triple tapping, etc.
* Inputs: u = int16_t (input signal); timeNow = uint32_t (current time)
* Outputs: x->b_multipleTap (get the output here)
*/
void multipleTapDet(int16_t u, uint32_t timeNow, MultipleTap *x) {
uint8_t b_timeout;
uint8_t b_hyst;
uint8_t b_pulse;
uint8_t z_pulseCnt;
uint8_t z_pulseCntRst;
uint32_t t_time;
// Detect hysteresis
if (x->b_hysteresis) {
b_hyst = (u > MULTIPLE_TAP_LO);
} else {
b_hyst = (u > MULTIPLE_TAP_HI);
}
// Detect pulse
b_pulse = (b_hyst != x->b_hysteresis);
// Save time when first pulse is detected
if (b_hyst && b_pulse && (x->z_pulseCntPrev == 0)) {
t_time = timeNow;
} else {
t_time = x->t_timePrev;
}
// Create timeout boolean
b_timeout = (timeNow - t_time > MULTIPLE_TAP_TIMEOUT);
// Create pulse counter
if ((!b_hyst) && (x->z_pulseCntPrev == 0)) {
z_pulseCnt = 0U;
} else {
z_pulseCnt = b_pulse;
}
// Reset counter if we detected complete tap presses OR there is a timeout
if ((x->z_pulseCntPrev >= MULTIPLE_TAP_NR) || b_timeout) {
z_pulseCntRst = 0U;
} else {
z_pulseCntRst = x->z_pulseCntPrev;
}
z_pulseCnt = z_pulseCnt + z_pulseCntRst;
// Check if complete tap presses are detected AND no timeout
if ((z_pulseCnt >= MULTIPLE_TAP_NR) && (!b_timeout)) {
x->b_multipleTap = !x->b_multipleTap; // Toggle output
}
// Update states
x->z_pulseCntPrev = z_pulseCnt;
x->b_hysteresis = b_hyst;
x->t_timePrev = t_time;
}