Updated IBUS variant

- separated the implementation from USART implementation for more clarity
- fixed warnings
- minor visual updates
This commit is contained in:
EmanuelFeru 2020-01-08 19:16:34 +01:00
parent c3a40f6454
commit d2c846cda9
4 changed files with 73 additions and 58 deletions

View File

@ -10,6 +10,7 @@
//#define VARIANT_USART3 // Variant for Serial control via USART3 input
//#define VARIANT_NUNCHUCK // Variant for Nunchuck controlled vehicle build
//#define VARIANT_PPM // Variant for RC-Remote with PPM-Sum Signal
//#define VARIANT_IBUS // Variant for RC-Remotes with FLYSKY IBUS
//#define VARIANT_HOVERCAR // Variant for HOVERCAR build
//#define VARIANT_TRANSPOTTER // Variant for TRANSPOTTER build https://github.com/NiklasFauth/hoverboard-firmware-hack/wiki/Build-Instruction:-TranspOtter https://hackaday.io/project/161891-transpotter-ng
#endif
@ -61,7 +62,7 @@
* Then you can verify voltage on value 6 (to get calibrated voltage multiplied by 100).
*/
#define BAT_FILT_COEF 655 // battery voltage filter coefficient in fixed-point. coef_fixedPoint = coef_floatingPoint * 2^16. In this case 655 = 0.01 * 2^16
#define BAT_CALIB_REAL_VOLTAGE 3970 // input voltage measured by multimeter (multiplied by 100). In this case 43.00 V * 100 = 4300
#define BAT_CALIB_REAL_VOLTAGE 3970 // input voltage measured by multimeter (multiplied by 100). For example 43.00 V * 100 = 4300
#define BAT_CALIB_ADC 1492 // adc-value measured by mainboard (value nr 5 on UART debug output)
#define BAT_CELLS 10 // battery number of cells. Normal Hoverboard battery: 10s
@ -133,18 +134,18 @@
// #define DEBUG_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuck or lcd) is used!
#endif
#ifdef VARIANT_IBUS
// ###### CONTROL VIA RC REMOTE WITH FLYSKY IBUS PROTOCOL ######
// left sensor board cable. Channel 1: steering, Channel 2: speed.
#define CONTROL_IBUS // use IBUS as input
#define IBUS_NUM_CHANNELS 14 // total number of IBUS channels to receive, even if they are not used.
#define IBUS_LENGTH 0x20
#define IBUS_COMMAND 0x40
// ###### CONTROL VIA RC REMOTE WITH FLYSKY IBUS PROTOCOL ######
/* Connected to Left sensor board cable. Channel 1: steering, Channel 2: speed. */
#ifdef VARIANT_IBUS
#define CONTROL_IBUS // use IBUS as input
#define IBUS_NUM_CHANNELS 14 // total number of IBUS channels to receive, even if they are not used.
#define IBUS_LENGTH 0x20
#define IBUS_COMMAND 0x40
#define CONTROL_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! For Arduino control check the hoverSerial.ino
#define FEEDBACK_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used!
#undef USART2_BAUD
#define USART2_BAUD 115200
#define USART2_BAUD 115200
#define CONTROL_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used!
#define FEEDBACK_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used!
#endif
@ -156,8 +157,8 @@
#define UART_DMA_CHANNEL DMA1_Channel2
#endif
// ###### CONTROL VIA RC REMOTE ######
#ifdef VARIANT_PPM
// ###### CONTROL VIA RC REMOTE ######
// left sensor board cable. Channel 1: steering, Channel 2: speed.
#define CONTROL_PPM // use PPM-Sum as input. disable CONTROL_SERIAL_USART2!
#define PPM_NUM_CHANNELS 6 // total number of PPM channels to receive, even if they are not used.

View File

@ -156,10 +156,11 @@ Most robust way for input is to use the ADC and potis. It works well even on 1m
This firmware offers currently these variants (selectable in [platformio.ini](/platformio.ini) and / or [/Inc/config.h](/Inc/config.h)):
- **VARIANT_ADC**: In this variant the motors are controlled by two potentiometers connected to the Left sensor cable (long wired)
- **VARIANT_USART3**: In this variant the motors are controlled via serial protocol on USART3 right sensor cable (short wired). The commands can be sent from an Arduino. Check out the [hoverserial.ino](/02_Arduino/hoverserial) as an example sketch.
- **VARIANT_NUNCHUCK**: Wii Nunchuck offers one hand control for throttle, braking and steering. This was one of the first input device used for electric armchairs or bottle crates.
- **VARIANT_PPM**: This is when you want to use a RC remote control with PPM Sum signal
- **VARIANT_IBUS**: This is when you want to use a RC remote control with Flysky IBUS protocol connected to the Left sensor cable.
- **VARIANT_HOVERCAR**: In this variant the motors are controlled by two pedals brake and throttle. Reverse is engaged by double tapping on the brake pedal at standstill.
- **VARIANT_TRANSPOTTER**: This build is for transpotter which is a hoverboard based transportation system. For more details on how to build it check [here](https://github.com/NiklasFauth/hoverboard-firmware-hack/wiki/Build-Instruction:-TranspOtter) and [here](https://hackaday.io/project/161891-transpotter-ng).
- **VARIANT_NUNCHUCK**: Wii Nunchuck offers one hand control for throttle, braking and steering. This was one of the first input device used for electric armchairs or bottle crates.
- **VARIANT_PPM**: This is when you want to use a RC remote control with PPM Sum singnal
Of course the firmware can be further customized for other needs or projects.

View File

@ -112,8 +112,6 @@ void Nunchuck_Read(void) {
HAL_Delay(3);
if (HAL_I2C_Master_Receive(&hi2c2,0xA4,(uint8_t*)nunchuck_data, 6, 10) == HAL_OK) {
timeout = 0;
} else {
timeout++;
}
#ifndef TRANSPOTTER

View File

@ -145,7 +145,6 @@ typedef struct{
} SerialFeedback;
static SerialFeedback Feedback;
#endif
static uint8_t serialSendCnt; // serial send counter
#if defined(CONTROL_NUNCHUCK) || defined(SUPPORT_NUNCHUCK) || defined(CONTROL_PPM) || defined(CONTROL_ADC)
static uint8_t button1, button2;
@ -181,6 +180,7 @@ extern volatile uint32_t timeout; // global variable for timeout
extern int16_t batVoltage; // global variable for battery voltage
static uint32_t inactivity_timeout_counter;
static uint32_t main_loop_counter;
extern uint8_t nunchuck_data[6];
#ifdef CONTROL_PPM
@ -524,50 +524,64 @@ int main(void) {
// Handle received data validity, timeout and fix out-of-sync if necessary
#ifdef CONTROL_IBUS
ibus_chksum = 0xFFFF - IBUS_LENGTH - IBUS_COMMAND;
for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i ++) {
ibus_chksum -= command.channels[i];
}
if (command.start == IBUS_LENGTH && command.type == IBUS_COMMAND && ibus_chksum == ( command.checksumh << 8) + command.checksuml ) {
#else
if (command.start == START_FRAME && command.checksum == (uint16_t)(command.start ^ command.steer ^ command.speed)) {
#endif
if (timeoutFlagSerial) { // Check for previous timeout flag
if (timeoutCntSerial-- <= 0) // Timeout de-qualification
timeoutFlagSerial = 0; // Timeout flag cleared
} else {
#ifdef CONTROL_IBUS
for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i +=2) {
ibus_captured_value[(i/2)] = CLAMP( command.channels[i] + (command.channels[i+1] << 8) - 1000, 0, INPUT_MAX); // 1000-2000 -> 0-1000
ibus_chksum = 0xFFFF - IBUS_LENGTH - IBUS_COMMAND;
for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i++) {
ibus_chksum -= command.channels[i];
}
if (command.start == IBUS_LENGTH && command.type == IBUS_COMMAND && ibus_chksum == (uint16_t)((command.checksumh << 8) + command.checksuml)) {
if (timeoutFlagSerial) { // Check for previous timeout flag
if (timeoutCntSerial-- <= 0) // Timeout de-qualification
timeoutFlagSerial = 0; // Timeout flag cleared
} else {
for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i+=2) {
ibus_captured_value[(i/2)] = CLAMP(command.channels[i] + (command.channels[i+1] << 8) - 1000, 0, INPUT_MAX); // 1000-2000 -> 0-1000
}
cmd1 = CLAMP((ibus_captured_value[0] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX);
cmd2 = CLAMP((ibus_captured_value[1] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX);
command.start = 0xFF; // Change the Start Frame for timeout detection in the next cycle
timeoutCntSerial = 0; // Reset the timeout counter
}
} else {
if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification
timeoutFlagSerial = 1; // Timeout detected
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
}
// Check periodically the received Start Frame. If it is NOT OK, most probably we are out-of-sync. Try to re-sync by reseting the DMA
if (main_loop_counter % 25 == 0 && command.start != IBUS_LENGTH && command.start != 0xFF) {
HAL_UART_DMAStop(&huart);
HAL_UART_Receive_DMA(&huart, (uint8_t *)&command, sizeof(command));
}
}
#else
if (command.start == START_FRAME && command.checksum == (uint16_t)(command.start ^ command.steer ^ command.speed)) {
if (timeoutFlagSerial) { // Check for previous timeout flag
if (timeoutCntSerial-- <= 0) // Timeout de-qualification
timeoutFlagSerial = 0; // Timeout flag cleared
} else {
cmd1 = CLAMP((int16_t)command.steer, INPUT_MIN, INPUT_MAX);
cmd2 = CLAMP((int16_t)command.speed, INPUT_MIN, INPUT_MAX);
command.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle
timeoutCntSerial = 0; // Reset the timeout counter
}
} else {
if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification
timeoutFlagSerial = 1; // Timeout detected
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
}
// Check periodically the received Start Frame. If it is NOT OK, most probably we are out-of-sync. Try to re-sync by reseting the DMA
if (main_loop_counter % 25 == 0 && command.start != START_FRAME && command.start != 0xFFFF) {
HAL_UART_DMAStop(&huart);
HAL_UART_Receive_DMA(&huart, (uint8_t *)&command, sizeof(command));
}
cmd1 = CLAMP((ibus_captured_value[0] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX);
cmd2 = CLAMP((ibus_captured_value[1] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX);
#else
cmd1 = CLAMP((int16_t)command.steer, INPUT_MIN, INPUT_MAX);
cmd2 = CLAMP((int16_t)command.speed, INPUT_MIN, INPUT_MAX);
#endif
command.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle
timeoutCntSerial = 0; // Reset the timeout counter
}
} else {
if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification
timeoutFlagSerial = 1; // Timeout detected
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
}
// Check the received Start Frame. If it is NOT OK, most probably we are out-of-sync.
// Try to re-sync by reseting the DMA
if (command.start != START_FRAME && command.start != 0xFFFF) {
HAL_UART_DMAStop(&huart);
HAL_UART_Receive_DMA(&huart, (uint8_t *)&command, sizeof(command));
}
}
#endif
if (timeoutFlagSerial) { // In case of timeout bring the system to a Safe State
ctrlModReq = 0; // OPEN_MODE request. This will bring the motor power to 0 in a controlled way
if (timeoutFlagSerial) { // In case of timeout bring the system to a Safe State
ctrlModReq = 0; // OPEN_MODE request. This will bring the motor power to 0 in a controlled way
cmd1 = 0;
cmd2 = 0;
} else {
ctrlModReq = ctrlModReqRaw; // Follow the Mode request
ctrlModReq = ctrlModReqRaw; // Follow the Mode request
}
timeout = 0;
@ -746,9 +760,7 @@ int main(void) {
board_temp_adcFilt = (int16_t)(board_temp_adcFixdt >> 20); // convert fixed-point to integer
board_temp_deg_c = (TEMP_CAL_HIGH_DEG_C - TEMP_CAL_LOW_DEG_C) * (board_temp_adcFilt - TEMP_CAL_LOW_ADC) / (TEMP_CAL_HIGH_ADC - TEMP_CAL_LOW_ADC) + TEMP_CAL_LOW_DEG_C;
serialSendCnt++; // Increment the counter
if (serialSendCnt > 20) { // Send data every 100 ms = 20 * 5 ms, where 5 ms is approximately the main loop duration
serialSendCnt = 0; // Reset the counter
if (main_loop_counter % 25 == 0) { // Send data periodically
// ####### DEBUG SERIAL OUT #######
#if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3)
@ -837,6 +849,9 @@ int main(void) {
if (inactivity_timeout_counter > (INACTIVITY_TIMEOUT * 60 * 1000) / (DELAY_IN_MAIN_LOOP + 1)) { // rest of main loop needs maybe 1ms
poweroff();
}
main_loop_counter++;
timeout++;
}
}