Minor changes for PR #18

- updated sligtly the order of defines and corrected defines for some variants in config.h
- fixed checksum data type in Arduino example (Issue #19)
This commit is contained in:
EmanuelFeru 2020-01-29 21:20:04 +01:00
parent 25f223a703
commit a57b600230
4 changed files with 125 additions and 119 deletions

View File

@ -58,7 +58,7 @@ typedef struct{
int16_t speedL_meas; int16_t speedL_meas;
int16_t batVoltage; int16_t batVoltage;
int16_t boardTemp; int16_t boardTemp;
int16_t checksum; uint16_t checksum;
} SerialFeedback; } SerialFeedback;
SerialFeedback Feedback; SerialFeedback Feedback;
SerialFeedback NewFeedback; SerialFeedback NewFeedback;

View File

@ -9,18 +9,52 @@
#if !defined(PLATFORMIO) #if !defined(PLATFORMIO)
//#define VARIANT_ADC // Variant for control via ADC input //#define VARIANT_ADC // Variant for control via ADC input
//#define VARIANT_USART // Variant for Serial control via USART3 input //#define VARIANT_USART // Variant for Serial control via USART3 input
//#define VARIANT_NUNCHUK // Variant for Nunchuk controlled vehicle build //#define VARIANT_NUNCHUK // Variant for Nunchuk controlled vehicle build
//#define VARIANT_PPM // Variant for RC-Remote with PPM-Sum Signal //#define VARIANT_PPM // Variant for RC-Remote with PPM-Sum Signal
//#define VARIANT_IBUS // Variant for RC-Remotes with FLYSKY IBUS //#define VARIANT_IBUS // Variant for RC-Remotes with FLYSKY IBUS
//#define VARIANT_HOVERCAR // Variant for HOVERCAR build //#define VARIANT_HOVERCAR // Variant for HOVERCAR build
//#define VARIANT_TRANSPOTTER // Variant for TRANSPOTTER build https://github.com/NiklasFauth/hoverboard-firmware-hack/wiki/Build-Instruction:-TranspOtter https://hackaday.io/project/161891-transpotter-ng //#define VARIANT_TRANSPOTTER // Variant for TRANSPOTTER build https://github.com/NiklasFauth/hoverboard-firmware-hack/wiki/Build-Instruction:-TranspOtter https://hackaday.io/project/161891-transpotter-ng
#endif #endif
#define INACTIVITY_TIMEOUT 8 // Minutes of not driving until poweroff. it is not very precise. #define INACTIVITY_TIMEOUT 8 // Minutes of not driving until poweroff. it is not very precise.
#define BEEPS_BACKWARD 1 // 0 or 1a #define BEEPS_BACKWARD 1 // 0 or 1
// ########################### END OF GENERAL SETTINGS ############################ // ########################### END OF GENERAL SETTINGS ############################
// ############################### DO-NOT-TOUCH SETTINGS ###############################
#define PWM_FREQ 16000 // PWM frequency in Hz / is also used for buzzer
#define DEAD_TIME 48 // PWM deadtime
#ifdef VARIANT_TRANSPOTTER
#define DELAY_IN_MAIN_LOOP 2
#else
#define DELAY_IN_MAIN_LOOP 5 // in ms. default 5. it is independent of all the timing critical stuff. do not touch if you do not know what you are doing.
#endif
#define TIMEOUT 5 // number of wrong / missing input commands before emergency off
#define A2BIT_CONV 50 // A to bit for current conversion on ADC. Example: 1 A = 50, 2 A = 100, etc
// ADC conversion time definitions
#define ADC_CONV_TIME_1C5 (14) //Total ADC clock cycles / conversion = ( 1.5+12.5)
#define ADC_CONV_TIME_7C5 (20) //Total ADC clock cycles / conversion = ( 7.5+12.5)
#define ADC_CONV_TIME_13C5 (26) //Total ADC clock cycles / conversion = ( 13.5+12.5)
#define ADC_CONV_TIME_28C5 (41) //Total ADC clock cycles / conversion = ( 28.5+12.5)
#define ADC_CONV_TIME_41C5 (54) //Total ADC clock cycles / conversion = ( 41.5+12.5)
#define ADC_CONV_TIME_55C5 (68) //Total ADC clock cycles / conversion = ( 55.5+12.5)
#define ADC_CONV_TIME_71C5 (84) //Total ADC clock cycles / conversion = ( 71.5+12.5)
#define ADC_CONV_TIME_239C5 (252) //Total ADC clock cycles / conversion = (239.5+12.5)
// This settings influences the actual sample-time. Only use definitions above
// This parameter needs to be the same as the ADC conversion for Current Phase of the FIRST Motor in setup.c
#define ADC_CONV_CLOCK_CYCLES (ADC_CONV_TIME_7C5)
// Set the configured ADC divider. This parameter needs to be the same ADC divider as PeriphClkInit.AdcClockSelection (see main.c)
#define ADC_CLOCK_DIV (4)
// ADC Total conversion time: this will be used to offset TIM8 in advance of TIM1 to align the Phase current ADC measurement
// This parameter is used in setup.c
#define ADC_TOTAL_CONV_TIME (ADC_CLOCK_DIV * ADC_CONV_CLOCK_CYCLES) // = ((SystemCoreClock / ADC_CLOCK_HZ) * ADC_CONV_CLOCK_CYCLES), where ADC_CLOCK_HZ = SystemCoreClock/ADC_CLOCK_DIV
// ########################### END OF DO-NOT-TOUCH SETTINGS ############################
// ############################### BATTERY ############################### // ############################### BATTERY ###############################
/* Battery voltage calibration: connect power source. /* Battery voltage calibration: connect power source.
@ -63,6 +97,56 @@
// ############################### MOTOR CONTROL #########################
/* GENERAL NOTES:
* 1. The parameters here are over-writing the default motor parameters. For all the available parameters check BLDC_controller_data.c
* 2. The parameters are represented in fixed point data type for a more efficient code execution
* 3. For calibrating the fixed-point parameters use the Fixed-Point Viewer tool (see <https://github.com/EmanuelFeru/FixedPointViewer>)
* 4. For more details regarding the parameters and the working principle of the controller please consult the Simulink model
* 5. A webview was created, so Matlab/Simulink installation is not needed, unless you want to regenerate the code.
* The webview is an html page that can be opened with browsers like: Microsoft Internet Explorer or Microsoft Edge
*
* NOTES Field Weakening / Phase Advance:
* 1. The Field Weakening is a linear interpolation from 0 to FIELD_WEAK_MAX or PHASE_ADV_MAX (depeding if FOC or SIN is selected, respectively)
* 2. The Field Weakening starts engaging at FIELD_WEAK_LO and reaches the maximum value at FIELD_WEAK_HI
* 3. If you re-calibrate the Field Weakening please take all the safety measures! The motors can spin very fast!
Inputs:
- cmd1 and cmd2: analog normalized input values. INPUT_MIN to INPUT_MAX
- button1 and button2: digital input values. 0 or 1
- adc_buffer.l_tx2 and adc_buffer.l_rx2: unfiltered ADC values (you do not need them). 0 to 4095
Outputs:
- speedR and speedL: normal driving INPUT_MIN to INPUT_MAX
*/
// Control selections
#define CTRL_TYP_SEL 2 // [-] Control type selection: 0 = Commutation , 1 = Sinusoidal, 2 = FOC Field Oriented Control (default)
#define CTRL_MOD_REQ 1 // [-] Control mode request: 0 = Open mode, 1 = VOLTAGE mode (default), 2 = SPEED mode, 3 = TORQUE mode. Note: SPEED and TORQUE modes are only available for FOC!
#define DIAG_ENA 1 // [-] Motor Diagnostics enable flag: 0 = Disabled, 1 = Enabled (default)
// Limitation settings
#define I_MOT_MAX 15 // [A] Maximum motor current limit
#define I_DC_MAX 17 // [A] Maximum DC Link current limit (This is the final current protection. Above this value, current chopping is applied. To avoid this make sure that I_DC_MAX = I_MOT_MAX + 2A)
#define N_MOT_MAX 1000 // [rpm] Maximum motor speed limit
// Field Weakening / Phase Advance
#define FIELD_WEAK_ENA 0 // [-] Field Weakening / Phase Advance enable flag: 0 = Disabled (default), 1 = Enabled
#define FIELD_WEAK_MAX 5 // [A] Maximum Field Weakening D axis current (only for FOC). Higher current results in higher maximum speed.
#define PHASE_ADV_MAX 25 // [deg] Maximum Phase Advance angle (only for SIN). Higher angle results in higher maximum speed.
#define FIELD_WEAK_HI 1500 // [-] Input target High threshold for reaching maximum Field Weakening / Phase Advance. Do NOT set this higher than 1500.
#define FIELD_WEAK_LO 1000 // [-] Input target Low threshold for starting Field Weakening / Phase Advance. Do NOT set this higher than 1000.
// Data checks - Do NOT touch
#if (FIELD_WEAK_ENA == 0)
#undef FIELD_WEAK_HI
#define FIELD_WEAK_HI 1000 // [-] This prevents the input target going beyond 1000 when Field Weakening is not enabled
#endif
#define INPUT_MAX MAX( 1000, FIELD_WEAK_HI) // [-] Defines the Input target maximum limitation
#define INPUT_MIN MIN(-1000,-FIELD_WEAK_HI) // [-] Defines the Input target minimum limitation
#define INPUT_MID INPUT_MAX / 2
// ########################### END OF MOTOR CONTROL ########################
// ############################### DEBUG SERIAL ############################### // ############################### DEBUG SERIAL ###############################
/* Connect GND and RX of a 3.3v uart-usb adapter to the left (USART2) or right sensor board cable (USART3) /* Connect GND and RX of a 3.3v uart-usb adapter to the left (USART2) or right sensor board cable (USART3)
* Be careful not to use the red wire of the cable. 15v will destroye evrything. * Be careful not to use the red wire of the cable. 15v will destroye evrything.
@ -86,7 +170,9 @@
*/ */
// #define DEBUG_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! // #define DEBUG_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used!
// #define DEBUG_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuk or lcd) is used! #if defined(VARIANT_ADC) || defined(VARIANT_HOVERCAR)
#define DEBUG_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuk or lcd) is used!
#endif
#ifndef VARIANT_TRANSPOTTER #ifndef VARIANT_TRANSPOTTER
//#define DEBUG_SERIAL_SERVOTERM //#define DEBUG_SERIAL_SERVOTERM
@ -109,6 +195,8 @@
* If VAL_floatingPoint >= 0, VAL_fixedPoint = VAL_floatingPoint * 2^14 * If VAL_floatingPoint >= 0, VAL_fixedPoint = VAL_floatingPoint * 2^14
* If VAL_floatingPoint < 0, VAL_fixedPoint = 2^16 + floor(VAL_floatingPoint * 2^14). * If VAL_floatingPoint < 0, VAL_fixedPoint = 2^16 + floor(VAL_floatingPoint * 2^14).
*/ */
// Value of RATE is in fixdt(1,16,4): VAL_fixedPoint = VAL_floatingPoint * 2^4. In this case 480 = 30 * 2^4
#define DEFAULT_RATE 480 // 30.0f [-] lower value == slower rate [0, 32767] = [0.0, 2047.9375]. Do NOT make rate negative (>32767)
#define DEFAULT_FILTER 6553 // Default for FILTER 0.1f [-] lower value == softer filter [0, 65535] = [0.0 - 1.0]. #define DEFAULT_FILTER 6553 // Default for FILTER 0.1f [-] lower value == softer filter [0, 65535] = [0.0 - 1.0].
#define DEFAULT_SPEED_COEFFICIENT 16384 // Default for SPEED_COEFFICIENT 1.0f [-] higher value == stronger. [0, 65535] = [-2.0 - 2.0]. In this case 16384 = 1.0 * 2^14 #define DEFAULT_SPEED_COEFFICIENT 16384 // Default for SPEED_COEFFICIENT 1.0f [-] higher value == stronger. [0, 65535] = [-2.0 - 2.0]. In this case 16384 = 1.0 * 2^14
#define DEFAULT_STEER_COEFFICIENT 8192 // Defualt for STEER_COEFFICIENT 0.5f [-] higher value == stronger. [0, 65535] = [-2.0 - 2.0]. In this case 8192 = 0.5 * 2^14. If you do not want any steering, set it to 0. #define DEFAULT_STEER_COEFFICIENT 8192 // Defualt for STEER_COEFFICIENT 0.5f [-] higher value == stronger. [0, 65535] = [-2.0 - 2.0]. In this case 8192 = 0.5 * 2^14. If you do not want any steering, set it to 0.
@ -145,10 +233,10 @@
// ############################ VARIANT_USART SETTINGS ############################ // ############################ VARIANT_USART SETTINGS ############################
#ifdef VARIANT_USART #ifdef VARIANT_USART
// #define CONTROL_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! For Arduino control check the hoverSerial.ino // #define CONTROL_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! For Arduino control check the hoverSerial.ino
// #define FEEDBACK_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! // #define FEEDBACK_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used!
//#define CONTROL_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuk or lcd) is used! For Arduino control check the hoverSerial.ino #define CONTROL_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuk or lcd) is used! For Arduino control check the hoverSerial.ino
//#define FEEDBACK_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuk or lcd) is used! #define FEEDBACK_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuk or lcd) is used!
#endif #endif
// ######################## END OF VARIANT_USART SETTINGS ######################### // ######################## END OF VARIANT_USART SETTINGS #########################
@ -214,11 +302,17 @@
#define ADC1_MAX 2500 // max ADC1-value while poti at maximum-position (0 - 4095) #define ADC1_MAX 2500 // max ADC1-value while poti at maximum-position (0 - 4095)
#define ADC2_MIN 500 // min ADC2-value while poti at minimum-position (0 - 4095) #define ADC2_MIN 500 // min ADC2-value while poti at minimum-position (0 - 4095)
#define ADC2_MAX 2200 // max ADC2-value while poti at maximum-position (0 - 4095) #define ADC2_MAX 2200 // max ADC2-value while poti at maximum-position (0 - 4095)
#define SPEED_COEFFICIENT 16384 // 1.0f #define SPEED_COEFFICIENT 16384 // 1.0f
#define STEER_COEFFICIENT 0 // 0.0f #define STEER_COEFFICIENT 0 // 0.0f
//#define INVERT_R_DIRECTION // Invert rotation of right motor //#define INVERT_R_DIRECTION // Invert rotation of right motor
//#define INVERT_L_DIRECTION // Invert rotation of left motor //#define INVERT_L_DIRECTION // Invert rotation of left motor
#endif #endif
// Multiple tap detection: default DOUBLE Tap on Brake pedal (4 pulses)
#define MULTIPLE_TAP_NR 2 * 2 // [-] Define tap number: MULTIPLE_TAP_NR = number_of_taps * 2, number_of_taps = 1 (for single taping), 2 (for double tapping), 3 (for triple tapping), etc...
#define MULTIPLE_TAP_HI 600 // [-] Multiple tap detection High hysteresis threshold
#define MULTIPLE_TAP_LO 200 // [-] Multiple tap detection Low hysteresis threshold
#define MULTIPLE_TAP_TIMEOUT 2000 // [ms] Multiple tap detection Timeout period. The taps need to happen within this time window to be accepted.
// ######################## END OF VARIANT_HOVERCAR SETTINGS ######################### // ######################## END OF VARIANT_HOVERCAR SETTINGS #########################
@ -227,121 +321,30 @@
//TODO ADD VALIDATION //TODO ADD VALIDATION
#ifdef VARIANT_TRANSPOTTER #ifdef VARIANT_TRANSPOTTER
#define CONTROL_GAMETRAK #define CONTROL_GAMETRAK
//#define SUPPORT_LCD #define SUPPORT_LCD
//#define SUPPORT_NUNCHUK #define SUPPORT_NUNCHUK
#define GAMETRAK_CONNECTION_NORMAL // for normal wiring according to the wiki instructions #define GAMETRAK_CONNECTION_NORMAL // for normal wiring according to the wiki instructions
//#define GAMETRAK_CONNECTION_ALTERNATE // use this define instead if you messed up the gametrak ADC wiring (steering is speed, and length of the wire is steering) //#define GAMETRAK_CONNECTION_ALTERNATE // use this define instead if you messed up the gametrak ADC wiring (steering is speed, and length of the wire is steering)
#define ROT_P 1.2 // P coefficient for the direction controller. Positive / Negative values to invert gametrak steering direction. #define ROT_P 1.2 // P coefficient for the direction controller. Positive / Negative values to invert gametrak steering direction.
// during nunchuk control (only relevant when activated) // during nunchuk control (only relevant when activated)
#define SPEED_COEFFICIENT 14746 // 0.9f - higher value == stronger. 0.0 to ~2.0? #define SPEED_COEFFICIENT 14746 // 0.9f - higher value == stronger. 0.0 to ~2.0?
#define STEER_COEFFICIENT 8192 // 0.5f - higher value == stronger. if you do not want any steering, set it to 0.0; 0.0 to 1.0 #define STEER_COEFFICIENT 8192 // 0.5f - higher value == stronger. if you do not want any steering, set it to 0.0; 0.0 to 1.0
#define INVERT_R_DIRECTION // Invert right motor
#define INVERT_L_DIRECTION // Invert left motor
#endif #endif
// ############################# END OF VARIANT_TRANSPOTTER SETTINGS ######################## // ############################# END OF VARIANT_TRANSPOTTER SETTINGS ########################
// ############################### MOTOR CONTROL #########################
/* GENERAL NOTES:
* 1. The parameters are over-writing the default motor parameters. For all the available parameters check BLDC_controller_data.c
* 2. The parameters are represented in fixed point data type for a more efficient code execution
* 3. For calibrating the fixed-point parameters use the Fixed-Point Viewer tool (see <https://github.com/EmanuelFeru/FixedPointViewer>)
* 4. For more details regarding the parameters and the working principle of the controller please consult the Simulink model
* 5. A webview was created, so Matlab/Simulink installation is not needed, unless you want to regenerate the code.
* The webview is an html page that can be opened with browsers like: Microsoft Internet Explorer or Microsoft Edge
*
* NOTES Field Weakening / Phase Advance:
* 1. The Field Weakening is a linear interpolation from 0 to FIELD_WEAK_MAX or PHASE_ADV_MAX (depeding if FOC or SIN is selected, respectively)
* 2. The Field Weakening starts engaging at FIELD_WEAK_LO and reaches the maximum value at FIELD_WEAK_HI
* 3. If you re-calibrate the Field Weakening please take all the safety measures! The motors can spin very fast!
Inputs:
- cmd1 and cmd2: analog normalized input values. INPUT_MIN to INPUT_MAX
- button1 and button2: digital input values. 0 or 1
- adc_buffer.l_tx2 and adc_buffer.l_rx2: unfiltered ADC values (you do not need them). 0 to 4095
Outputs:
- speedR and speedL: normal driving INPUT_MIN to INPUT_MAX
*/
// Control selections
#define CTRL_TYP_SEL 2 // [-] Control type selection: 0 = Commutation , 1 = Sinusoidal, 2 = FOC Field Oriented Control (default)
#define CTRL_MOD_REQ 1 // [-] Control mode request: 0 = Open mode, 1 = VOLTAGE mode (default), 2 = SPEED mode, 3 = TORQUE mode. Note: SPEED and TORQUE modes are only available for FOC!
#define DIAG_ENA 1 // [-] Motor Diagnostics enable flag: 0 = Disabled, 1 = Enabled (default)
// Limitation settings
#define I_MOT_MAX 15 // [A] Maximum motor current limit
#define I_DC_MAX 17 // [A] Maximum DC Link current limit (This is the final current protection. Above this value, current chopping is applied. To avoid this make sure that I_DC_MAX = I_MOT_MAX + 2A)
#define N_MOT_MAX 1000 // [rpm] Maximum motor speed limit
// Field Weakening / Phase Advance
#define FIELD_WEAK_ENA 0 // [-] Field Weakening / Phase Advance enable flag: 0 = Disabled (default), 1 = Enabled
#define FIELD_WEAK_MAX 5 // [A] Maximum Field Weakening D axis current (only for FOC). Higher current results in higher maximum speed.
#define PHASE_ADV_MAX 25 // [deg] Maximum Phase Advance angle (only for SIN). Higher angle results in higher maximum speed.
#define FIELD_WEAK_HI 1500 // [-] Input target High threshold for reaching maximum Field Weakening / Phase Advance. Do NOT set this higher than 1500.
#define FIELD_WEAK_LO 1000 // [-] Input target Low threshold for starting Field Weakening / Phase Advance. Do NOT set this higher than 1000.
// Data checks - Do NOT touch
#if (FIELD_WEAK_ENA == 0)
#undef FIELD_WEAK_HI
#define FIELD_WEAK_HI 1000 // [-] This prevents the input target going beyond 1000 when Field Weakening is not enabled
#endif
#define INPUT_MAX MAX( 1000, FIELD_WEAK_HI) // [-] Defines the Input target maximum limitation
#define INPUT_MIN MIN(-1000,-FIELD_WEAK_HI) // [-] Defines the Input target minimum limitation
#define INPUT_MID INPUT_MAX / 2
// Multiple tap detection: default DOUBLE Tap (4 pulses)
#define MULTIPLE_TAP_NR 2 * 2 // [-] Define tap number: MULTIPLE_TAP_NR = number_of_taps * 2, number_of_taps = 1 (for single taping), 2 (for double tapping), 3 (for triple tapping), etc...
#define MULTIPLE_TAP_HI 600 // [-] Multiple tap detection High hysteresis threshold
#define MULTIPLE_TAP_LO 200 // [-] Multiple tap detection Low hysteresis threshold
#define MULTIPLE_TAP_TIMEOUT 2000 // [ms] Multiple tap detection Timeout period. The taps need to happen within this time window to be accepted.
// Value of RATE is in fixdt(1,16,4): VAL_fixedPoint = VAL_floatingPoint * 2^4. In this case 480 = 30 * 2^4
#define RATE 480 // 30.0f [-] lower value == slower rate [0, 32767] = [0.0, 2047.9375]. Do NOT make rate negative (>32767)
// ########################### END OF MOTOR CONTROL ########################
// ############################### DO-NOT-TOUCH SETTINGS ###############################
#define PWM_FREQ 16000 // PWM frequency in Hz / is also used for buzzer
#define DEAD_TIME 48 // PWM deadtime
#ifdef VARIANT_TRANSPOTTER
#define DELAY_IN_MAIN_LOOP 2
#else
#define DELAY_IN_MAIN_LOOP 5 // in ms. default 5. it is independent of all the timing critical stuff. do not touch if you do not know what you are doing.
#endif
#define TIMEOUT 5 // number of wrong / missing input commands before emergency off
#define A2BIT_CONV 50 // A to bit for current conversion on ADC. Example: 1 A = 50, 2 A = 100, etc
// ADC conversion time definitions
#define ADC_CONV_TIME_1C5 (14) //Total ADC clock cycles / conversion = ( 1.5+12.5)
#define ADC_CONV_TIME_7C5 (20) //Total ADC clock cycles / conversion = ( 7.5+12.5)
#define ADC_CONV_TIME_13C5 (26) //Total ADC clock cycles / conversion = ( 13.5+12.5)
#define ADC_CONV_TIME_28C5 (41) //Total ADC clock cycles / conversion = ( 28.5+12.5)
#define ADC_CONV_TIME_41C5 (54) //Total ADC clock cycles / conversion = ( 41.5+12.5)
#define ADC_CONV_TIME_55C5 (68) //Total ADC clock cycles / conversion = ( 55.5+12.5)
#define ADC_CONV_TIME_71C5 (84) //Total ADC clock cycles / conversion = ( 71.5+12.5)
#define ADC_CONV_TIME_239C5 (252) //Total ADC clock cycles / conversion = (239.5+12.5)
// This settings influences the actual sample-time. Only use definitions above
// This parameter needs to be the same as the ADC conversion for Current Phase of the FIRST Motor in setup.c
#define ADC_CONV_CLOCK_CYCLES (ADC_CONV_TIME_7C5)
// Set the configured ADC divider. This parameter needs to be the same ADC divider as PeriphClkInit.AdcClockSelection (see main.c)
#define ADC_CLOCK_DIV (4)
// ADC Total conversion time: this will be used to offset TIM8 in advance of TIM1 to align the Phase current ADC measurement
// This parameter is used in setup.c
#define ADC_TOTAL_CONV_TIME (ADC_CLOCK_DIV * ADC_CONV_CLOCK_CYCLES) // = ((SystemCoreClock / ADC_CLOCK_HZ) * ADC_CONV_CLOCK_CYCLES), where ADC_CLOCK_HZ = SystemCoreClock/ADC_CLOCK_DIV
// ########################### END OF DO-NOT-TOUCH SETTINGS ############################
// ########################### UART SETIINGS ############################ // ########################### UART SETIINGS ############################
#if defined(FEEDBACK_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(DEBUG_SERIAL_USART3) #if defined(FEEDBACK_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2) || \
defined(FEEDBACK_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(DEBUG_SERIAL_USART3)
#define START_FRAME 0xAAAA // [-] Start frame definition for serial commands #define START_FRAME 0xAAAA // [-] Start frame definition for serial commands
#define SERIAL_TIMEOUT 160 // [-] Serial timeout duration for the received data. 160 ~= 0.8 sec. Calculation: 0.8 sec / 0.005 sec #define SERIAL_TIMEOUT 160 // [-] Serial timeout duration for the received data. 160 ~= 0.8 sec. Calculation: 0.8 sec / 0.005 sec
#endif #endif
#if defined(FEEDBACK_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2) #if defined(FEEDBACK_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2)
#ifndef USART2_BAUD #ifndef USART2_BAUD
#define USART2_BAUD 38400 // UART2 baud rate (long wired cable) #define USART2_BAUD 38400 // UART2 baud rate (long wired cable)
#endif #endif
#define USART2_WORDLENGTH UART_WORDLENGTH_8B // UART_WORDLENGTH_8B or UART_WORDLENGTH_9B #define USART2_WORDLENGTH UART_WORDLENGTH_8B // UART_WORDLENGTH_8B or UART_WORDLENGTH_9B
#endif #endif
@ -362,15 +365,18 @@
// ############################### APPLY DEFAULT SETTINGS ############################### // ############################### APPLY DEFAULT SETTINGS ###############################
#ifndef RATE
#define RATE DEFAULT_RATE
#endif
#ifndef FILTER
#define FILTER DEFAULT_FILTER
#endif
#ifndef SPEED_COEFFICIENT #ifndef SPEED_COEFFICIENT
#define SPEED_COEFFICIENT DEFAULT_SPEED_COEFFICIENT #define SPEED_COEFFICIENT DEFAULT_SPEED_COEFFICIENT
#endif #endif
#ifndef STEER_COEFFICIENT #ifndef STEER_COEFFICIENT
#define STEER_COEFFICIENT DEFAULT_STEER_COEFFICIENT #define STEER_COEFFICIENT DEFAULT_STEER_COEFFICIENT
#endif #endif
#ifndef FILTER
#define FILTER DEFAULT_FILTER
#endif
// ########################### END OF APPLY DEFAULT SETTING ############################ // ########################### END OF APPLY DEFAULT SETTING ############################

View File

@ -155,7 +155,7 @@ Most robust way for input is to use the ADC and potis. It works well even on 1m
This firmware offers currently these variants (selectable in [platformio.ini](/platformio.ini) and / or [/Inc/config.h](/Inc/config.h)): This firmware offers currently these variants (selectable in [platformio.ini](/platformio.ini) and / or [/Inc/config.h](/Inc/config.h)):
- **VARIANT_ADC**: In this variant the motors are controlled by two potentiometers connected to the Left sensor cable (long wired) - **VARIANT_ADC**: In this variant the motors are controlled by two potentiometers connected to the Left sensor cable (long wired)
- **VARIANT_USART**: In this variant the motors are controlled via serial protocol on USART3 right sensor cable (short wired). The commands can be sent from an Arduino. Check out the [hoverserial.ino](/02_Arduino/hoverserial) as an example sketch. - **VARIANT_USART**: In this variant the motors are controlled via serial protocol (e.g. on USART3 right sensor cable, the short wired cable). The commands can be sent from an Arduino. Check out the [hoverserial.ino](/02_Arduino/hoverserial) as an example sketch.
- **VARIANT_NUNCHUK**: Wii Nunchuk offers one hand control for throttle, braking and steering. This was one of the first input device used for electric armchairs or bottle crates. - **VARIANT_NUNCHUK**: Wii Nunchuk offers one hand control for throttle, braking and steering. This was one of the first input device used for electric armchairs or bottle crates.
- **VARIANT_PPM**: This is when you want to use a RC remote control with PPM Sum signal - **VARIANT_PPM**: This is when you want to use a RC remote control with PPM Sum signal
- **VARIANT_IBUS**: This is when you want to use a RC remote control with Flysky IBUS protocol connected to the Left sensor cable. - **VARIANT_IBUS**: This is when you want to use a RC remote control with Flysky IBUS protocol connected to the Left sensor cable.
@ -170,7 +170,7 @@ Of course the firmware can be further customized for other needs or projects.
Last but not least, I would like to acknowledge and thank the following people: Last but not least, I would like to acknowledge and thank the following people:
- Original firmware: [@NiklasFauth](https://github.com/NiklasFauth) - Original firmware: [@NiklasFauth](https://github.com/NiklasFauth)
- Github: [@TomTinkering](https://github.com/TomTinkering), [@ced2c](https://github.com/ced2c), [@btsimonh](https://github.com/btsimonh), [@lalalandrus](https://github.com/lalalandrus), [@p-h-a-i-l](https://github.com/p-h-a-i-l) , [@AntumArk](https://github.com/AntumArk), [@juodumas](https://github.com/juodumas) - Github: [@TomTinkering](https://github.com/TomTinkering), [@ced2c](https://github.com/ced2c), [@btsimonh](https://github.com/btsimonh), [@lalalandrus](https://github.com/lalalandrus), [@p-h-a-i-l](https://github.com/p-h-a-i-l) , [@AntumArk](https://github.com/AntumArk), [@juodumas](https://github.com/juodumas)
- Github: all the people that contributed via Pull Requests
- ST Employee: [cedric H](https://community.st.com/s/question/0D50X0000B28qTDSQY/custom-foc-control-current-measurement-dma-timer-interrupt-needs-review) - ST Employee: [cedric H](https://community.st.com/s/question/0D50X0000B28qTDSQY/custom-foc-control-current-measurement-dma-timer-interrupt-needs-review)
for the very useful discussions, code snippets, and good suggestions to make this work possbile.

View File

@ -11,7 +11,7 @@ src_dir = Src
; ;
;default_envs = VARIANT_ADC ; Variant for control via ADC input ;default_envs = VARIANT_ADC ; Variant for control via ADC input
;default_envs = VARIANT_USART ; Variant for Serial control via USART3 input ;default_envs = VARIANT_USART ; Variant for Serial control via USART3 input
;default_envs = VARIANT_NUNCHUK ; Variant for Nunchuk controlled vehicle build ;default_envs = VARIANT_NUNCHUK ; Variant for Nunchuk controlled vehicle build
;default_envs = VARIANT_PPM ; Variant for RC-Remotes with PPM-Sum signal ;default_envs = VARIANT_PPM ; Variant for RC-Remotes with PPM-Sum signal
;default_envs = VARIANT_IBUS ; Variant for RC-Remotes with FLYSKY IBUS ;default_envs = VARIANT_IBUS ; Variant for RC-Remotes with FLYSKY IBUS
;default_envs = VARIANT_HOVERCAR ; Variant for HOVERCAR build ;default_envs = VARIANT_HOVERCAR ; Variant for HOVERCAR build