Added deadband for PPM signal

Issue #29
This commit is contained in:
EmanuelFeru 2020-03-24 20:36:19 +01:00
parent 39e4fdc869
commit 38574153f0
4 changed files with 36 additions and 23 deletions

View File

@ -188,7 +188,7 @@
*/ */
// #define DEBUG_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! // #define DEBUG_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used!
#if defined(VARIANT_ADC) #if defined(VARIANT_ADC) || defined(VARIANT_PPM)
#define DEBUG_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuk or lcd) is used! #define DEBUG_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuk or lcd) is used!
#endif #endif
@ -273,6 +273,12 @@
*/ */
#define CONTROL_PPM // use PPM-Sum as input. disable CONTROL_SERIAL_USART2! #define CONTROL_PPM // use PPM-Sum as input. disable CONTROL_SERIAL_USART2!
#define PPM_NUM_CHANNELS 6 // total number of PPM channels to receive, even if they are not used. #define PPM_NUM_CHANNELS 6 // total number of PPM channels to receive, even if they are not used.
#define PPM_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
// Min / Max values of each channel (use DEBUG to determine these values)
#define PPM_CH1_MAX 1000 // (0 - 1000)
#define PPM_CH1_MIN -1000 // (-1000 - 0)
#define PPM_CH2_MAX 1000 // (0 - 1000)
#define PPM_CH2_MIN -1000 // (-1000 - 0)
#endif #endif
// ############################# END OF VARIANT_PPM SETTINGS ############################ // ############################# END OF VARIANT_PPM SETTINGS ############################
@ -284,16 +290,16 @@
* Channel 1: steering, Channel 2: speed. * Channel 1: steering, Channel 2: speed.
*/ */
#define CONTROL_PWM // use RC PWM as input. disable DEBUG_SERIAL_USART2! #define CONTROL_PWM // use RC PWM as input. disable DEBUG_SERIAL_USART2!
// #define SUPPORT_BUTTONS // use right sensor board cable for button inputs. Disable DEBUG_SERIAL_USART3! #define PWM_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
#define PWM_DEADBAND 100 // How much of the center position is considered 'center' (100 = values -100 to 100 are considered 0)
// Min / Max values of each channel (use DEBUG to determine these values) // Min / Max values of each channel (use DEBUG to determine these values)
#define PWM_CH1_MAX 1000 // (0 - 1000) #define PWM_CH1_MAX 1000 // (0 - 1000)
#define PWM_CH1_MIN -1000 // (-1000 - 0) #define PWM_CH1_MIN -1000 // (-1000 - 0)
#define PWM_CH2_MAX 1000 // (0 - 1000) #define PWM_CH2_MAX 1000 // (0 - 1000)
#define PWM_CH2_MIN -1000 // (-1000 - 0) #define PWM_CH2_MIN -1000 // (-1000 - 0)
#define FILTER 6553 // 0.1f [-] fixdt(0,16,16) lower value == softer filter [0, 65535] = [0.0 - 1.0]. #define FILTER 6553 // 0.1f [-] fixdt(0,16,16) lower value == softer filter [0, 65535] = [0.0 - 1.0].
#define SPEED_COEFFICIENT 16384 // 1.0f [-] fixdt(1,16,14) higher value == stronger. [0, 65535] = [-2.0 - 2.0]. In this case 16384 = 1.0 * 2^14 #define SPEED_COEFFICIENT 16384 // 1.0f [-] fixdt(1,16,14) higher value == stronger. [0, 65535] = [-2.0 - 2.0]. In this case 16384 = 1.0 * 2^14
#define STEER_COEFFICIENT 0 // 0.0f [-] fixdt(1,16,14) higher value == stronger. [0, 65535] = [-2.0 - 2.0]. In this case 0 = 0.0 * 2^14. If you do not want any steering, set it to 0. #define STEER_COEFFICIENT 0 // 0.0f [-] fixdt(1,16,14) higher value == stronger. [0, 65535] = [-2.0 - 2.0]. In this case 0 = 0.0 * 2^14. If you do not want any steering, set it to 0.
// #define SUPPORT_BUTTONS // use right sensor board cable for button inputs. Disable DEBUG_SERIAL_USART3!
// #define INVERT_R_DIRECTION // #define INVERT_R_DIRECTION
// #define INVERT_L_DIRECTION // #define INVERT_L_DIRECTION
#endif #endif

View File

@ -73,7 +73,7 @@ void poweroffPressCheck(void);
// Read Command Function // Read Command Function
void readCommand(void); void readCommand(void);
int PWM_Signal_Correct(int16_t u, int16_t min, int16_t max); int addDeadBand(int16_t u, int16_t deadBand, int16_t min, int16_t max);
// Sideboard functions // Sideboard functions
void sideboardLeds(uint8_t *leds); void sideboardLeds(uint8_t *leds);

View File

@ -82,8 +82,11 @@ extern SerialSideboard Sideboard_L;
#if defined(SIDEBOARD_SERIAL_USART3) #if defined(SIDEBOARD_SERIAL_USART3)
extern SerialSideboard Sideboard_R; extern SerialSideboard Sideboard_R;
#endif #endif
#if defined(CONTROL_PPM) && defined(DEBUG_SERIAL_USART3)
extern volatile uint16_t ppm_captured_value[PPM_NUM_CHANNELS+1];
#endif
#if defined(CONTROL_PWM) && defined(DEBUG_SERIAL_USART3) #if defined(CONTROL_PWM) && defined(DEBUG_SERIAL_USART3)
//extern volatile uint16_t pwm_captured_ch1_value; extern volatile uint16_t pwm_captured_ch1_value;
extern volatile uint16_t pwm_captured_ch2_value; extern volatile uint16_t pwm_captured_ch2_value;
#endif #endif
@ -385,8 +388,12 @@ int main(void) {
setScopeChannel(0, (int16_t)adc_buffer.l_tx2); // 1: ADC1 setScopeChannel(0, (int16_t)adc_buffer.l_tx2); // 1: ADC1
setScopeChannel(1, (int16_t)adc_buffer.l_rx2); // 2: ADC2 setScopeChannel(1, (int16_t)adc_buffer.l_rx2); // 2: ADC2
#endif #endif
#ifdef CONTROL_PPM
setScopeChannel(0, ppm_captured_value[0]); // 1: CH1
setScopeChannel(1, ppm_captured_value[1]); // 2: CH2
#endif
#ifdef CONTROL_PWM #ifdef CONTROL_PWM
setScopeChannel(0, 0);//pwm_captured_ch1_value); // 1: CH1 setScopeChannel(0, pwm_captured_ch1_value); // 1: CH1
setScopeChannel(1, pwm_captured_ch2_value); // 2: CH2 setScopeChannel(1, pwm_captured_ch2_value); // 2: CH2
#endif #endif
setScopeChannel(2, (int16_t)speedR); // 3: output command: [-1000, 1000] setScopeChannel(2, (int16_t)speedR); // 3: output command: [-1000, 1000]

View File

@ -637,8 +637,8 @@ void readCommand(void) {
#endif #endif
#ifdef CONTROL_PPM #ifdef CONTROL_PPM
cmd1 = CLAMP((ppm_captured_value[0] - 500) * 2, INPUT_MIN, INPUT_MAX); cmd1 = CLAMP(addDeadBand((ppm_captured_value[0] - 500) * 2, PPM_DEADBAND, PPM_CH1_MIN, PPM_CH1_MAX), INPUT_MIN, INPUT_MAX);
cmd2 = CLAMP((ppm_captured_value[1] - 500) * 2, INPUT_MIN, INPUT_MAX); cmd2 = CLAMP(addDeadBand((ppm_captured_value[1] - 500) * 2, PPM_DEADBAND, PPM_CH1_MIN, PPM_CH1_MAX), INPUT_MIN, INPUT_MAX);
#ifdef SUPPORT_BUTTONS #ifdef SUPPORT_BUTTONS
button1 = ppm_captured_value[5] > 500; button1 = ppm_captured_value[5] > 500;
button2 = 0; button2 = 0;
@ -647,8 +647,8 @@ void readCommand(void) {
#endif #endif
#ifdef CONTROL_PWM #ifdef CONTROL_PWM
cmd1 = CLAMP(PWM_Signal_Correct((pwm_captured_ch1_value - 500) * 2, PWM_CH1_MIN, PWM_CH1_MAX), INPUT_MIN, INPUT_MAX); cmd1 = CLAMP(addDeadBand((pwm_captured_ch1_value - 500) * 2, PWM_DEADBAND, PWM_CH1_MIN, PWM_CH1_MAX), INPUT_MIN, INPUT_MAX);
cmd2 = CLAMP(PWM_Signal_Correct((pwm_captured_ch2_value - 500) * 2, PWM_CH2_MIN, PWM_CH2_MAX), INPUT_MIN, INPUT_MAX); cmd2 = CLAMP(addDeadBand((pwm_captured_ch2_value - 500) * 2, PWM_DEADBAND, PWM_CH2_MIN, PWM_CH2_MAX), INPUT_MIN, INPUT_MAX);
#ifdef SUPPORT_BUTTONS #ifdef SUPPORT_BUTTONS
button1 = !HAL_GPIO_ReadPin(BUTTON1_RIGHT_PORT, BUTTON1_RIGHT_PIN); button1 = !HAL_GPIO_ReadPin(BUTTON1_RIGHT_PORT, BUTTON1_RIGHT_PIN);
button2 = !HAL_GPIO_ReadPin(BUTTON2_RIGHT_PORT, BUTTON2_RIGHT_PIN); button2 = !HAL_GPIO_ReadPin(BUTTON2_RIGHT_PORT, BUTTON2_RIGHT_PIN);
@ -842,18 +842,18 @@ void readCommand(void) {
/* /*
* PWM Signal Correction * Add Dead-band to a signal
* This function realizes a dead-band around 0 and scales the input within a min and a max * This function realizes a dead-band around 0 and scales the input within a min and a max
*/ */
int PWM_Signal_Correct(int16_t u, int16_t min, int16_t max) { int addDeadBand(int16_t u, int16_t deadBand, int16_t min, int16_t max) {
#ifdef CONTROL_PWM #if defined(CONTROL_PPM) || defined(CONTROL_PWM)
int outVal = 0; int outVal = 0;
if(u > -PWM_DEADBAND && u < PWM_DEADBAND) { if(u > -deadBand && u < deadBand) {
outVal = 0; outVal = 0;
} else if(u > 0) { } else if(u > 0) {
outVal = (INPUT_MAX * CLAMP(u - PWM_DEADBAND, 0, max - PWM_DEADBAND)) / (max - PWM_DEADBAND); outVal = (INPUT_MAX * CLAMP(u - deadBand, 0, max - deadBand)) / (max - deadBand);
} else { } else {
outVal = (INPUT_MIN * CLAMP(u + PWM_DEADBAND, min + PWM_DEADBAND, 0)) / (min + PWM_DEADBAND); outVal = (INPUT_MIN * CLAMP(u + deadBand, min + deadBand, 0)) / (min + deadBand);
} }
return outVal; return outVal;
#else #else