2020-03-01 09:00:26 +00:00
/**
* This file is part of the hoverboard - firmware - hack project .
*
* Copyright ( C ) 2020 - 2021 Emanuel FERU < aerdronix @ gmail . com >
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
// Includes
# include <stdlib.h> // for abs()
# include <string.h>
# include "stm32f1xx_hal.h"
# include "defines.h"
# include "setup.h"
# include "config.h"
# include "comms.h"
# include "eeprom.h"
# include "util.h"
# include "BLDC_controller.h"
# include "rtwtypes.h"
# if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD)
# include "hd44780.h"
# endif
/* =========================== Variable Definitions =========================== */
//------------------------------------------------------------------------
// Global variables set externally
//------------------------------------------------------------------------
extern volatile adc_buf_t adc_buffer ;
extern I2C_HandleTypeDef hi2c2 ;
2020-06-21 21:14:46 +00:00
extern UART_HandleTypeDef huart2 ;
extern UART_HandleTypeDef huart3 ;
2020-03-01 09:00:26 +00:00
extern int16_t batVoltage ;
extern uint8_t backwardDrive ;
extern uint8_t buzzerFreq ; // global variable for the buzzer pitch. can be 1, 2, 3, 4, 5, 6, 7...
extern uint8_t buzzerPattern ; // global variable for the buzzer pattern. can be 1, 2, 3, 4, 5, 6, 7...
extern uint8_t enable ; // global variable for motor enable
extern uint8_t nunchuk_data [ 6 ] ;
2020-07-01 17:50:32 +00:00
extern volatile uint32_t timeoutCnt ; // global variable for general timeout counter
2020-03-01 09:00:26 +00:00
extern volatile uint32_t main_loop_counter ;
2020-06-25 18:17:55 +00:00
# if defined(CONTROL_PPM_LEFT) || defined(CONTROL_PPM_RIGHT)
2020-03-01 09:00:26 +00:00
extern volatile uint16_t ppm_captured_value [ PPM_NUM_CHANNELS + 1 ] ;
# endif
2020-06-25 18:17:55 +00:00
# if defined(CONTROL_PWM_LEFT) || defined(CONTROL_PWM_RIGHT)
2020-03-24 18:57:08 +00:00
extern volatile uint16_t pwm_captured_ch1_value ;
2020-03-21 18:24:29 +00:00
extern volatile uint16_t pwm_captured_ch2_value ;
# endif
2020-03-01 09:00:26 +00:00
//------------------------------------------------------------------------
// Global variables set here in util.c
//------------------------------------------------------------------------
// Matlab defines - from auto-code generation
//---------------
RT_MODEL rtM_Left_ ; /* Real-time model */
RT_MODEL rtM_Right_ ; /* Real-time model */
RT_MODEL * const rtM_Left = & rtM_Left_ ;
RT_MODEL * const rtM_Right = & rtM_Right_ ;
extern P rtP_Left ; /* Block parameters (auto storage) */
DW rtDW_Left ; /* Observable states */
ExtU rtU_Left ; /* External inputs */
ExtY rtY_Left ; /* External outputs */
P rtP_Right ; /* Block parameters (auto storage) */
DW rtDW_Right ; /* Observable states */
ExtU rtU_Right ; /* External inputs */
ExtY rtY_Right ; /* External outputs */
//---------------
int16_t cmd1 ; // normalized input value. -1000 to 1000
int16_t cmd2 ; // normalized input value. -1000 to 1000
int16_t speedAvg ; // average measured speed
int16_t speedAvgAbs ; // average measured speed in absolute
uint8_t timeoutFlagADC = 0 ; // Timeout Flag for ADC Protection: 0 = OK, 1 = Problem detected (line disconnected or wrong ADC data)
uint8_t timeoutFlagSerial = 0 ; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
uint8_t ctrlModReqRaw = CTRL_MOD_REQ ;
uint8_t ctrlModReq = CTRL_MOD_REQ ; // Final control mode request
# if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD)
LCD_PCF8574_HandleTypeDef lcd ;
# endif
# if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK)
uint8_t nunchuk_connected = 1 ;
# else
uint8_t nunchuk_connected = 0 ;
# endif
# ifdef VARIANT_TRANSPOTTER
float setDistance ;
uint16_t VirtAddVarTab [ NB_OF_VAR ] = { 0x1337 } ; // Virtual address defined by the user: 0xFFFF value is prohibited
static uint16_t saveValue = 0 ;
static uint8_t saveValue_valid = 0 ;
# elif defined(CONTROL_ADC)
uint16_t VirtAddVarTab [ NB_OF_VAR ] = { 0x1300 , 1301 , 1302 , 1303 , 1304 , 1305 , 1306 , 1307 , 1308 } ;
# else
uint16_t VirtAddVarTab [ NB_OF_VAR ] = { 0x1300 } ; // Dummy virtual address to avoid warnings
# endif
//------------------------------------------------------------------------
// Local variables
//------------------------------------------------------------------------
static int16_t INPUT_MAX ; // [-] Input target maximum limitation
static int16_t INPUT_MIN ; // [-] Input target minimum limitation
# ifdef CONTROL_ADC
static uint8_t cur_spd_valid = 0 ;
static uint8_t adc_cal_valid = 0 ;
static uint16_t ADC1_MIN_CAL = ADC1_MIN ;
static uint16_t ADC1_MAX_CAL = ADC1_MAX ;
static uint16_t ADC2_MIN_CAL = ADC2_MIN ;
static uint16_t ADC2_MAX_CAL = ADC2_MAX ;
# ifdef ADC1_MID_POT
static uint16_t ADC1_MID_CAL = ADC1_MID ;
# else
static uint16_t ADC1_MID_CAL = 0 ;
# endif
# ifdef ADC1_MID_POT
static uint16_t ADC2_MID_CAL = ADC2_MID ;
# else
static uint16_t ADC2_MID_CAL = 0 ;
# endif
# endif
2020-06-22 07:17:42 +00:00
# if defined(CONTROL_ADC) && defined(ADC_PROTECT_ENA)
static int16_t timeoutCntADC = 0 ; // Timeout counter for ADC Protection
# endif
# if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
static uint8_t rx_buffer_L [ SERIAL_BUFFER_SIZE ] ; // USART Rx DMA circular buffer
static uint32_t rx_buffer_L_len = ARRAY_LEN ( rx_buffer_L ) ;
# endif
# if defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
static uint16_t timeoutCntSerial_L = 0 ; // Timeout counter for Rx Serial command
static uint8_t timeoutFlagSerial_L = 0 ; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
# endif
# if defined(SIDEBOARD_SERIAL_USART2)
SerialSideboard Sideboard_L ;
SerialSideboard Sideboard_L_raw ;
static uint32_t Sideboard_L_len = sizeof ( Sideboard_L ) ;
# endif
# if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
static uint8_t rx_buffer_R [ SERIAL_BUFFER_SIZE ] ; // USART Rx DMA circular buffer
static uint32_t rx_buffer_R_len = ARRAY_LEN ( rx_buffer_R ) ;
# endif
# if defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
static uint16_t timeoutCntSerial_R = 0 ; // Timeout counter for Rx Serial command
static uint8_t timeoutFlagSerial_R = 0 ; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
# endif
# if defined(SIDEBOARD_SERIAL_USART3)
SerialSideboard Sideboard_R ;
SerialSideboard Sideboard_R_raw ;
static uint32_t Sideboard_R_len = sizeof ( Sideboard_R ) ;
# endif
# if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
static SerialCommand command ;
static SerialCommand command_raw ;
static uint32_t command_len = sizeof ( command ) ;
# ifdef CONTROL_IBUS
static uint16_t ibus_chksum ;
static uint16_t ibus_captured_value [ IBUS_NUM_CHANNELS ] ;
# endif
# endif
2020-06-25 18:17:55 +00:00
# if defined(SUPPORT_BUTTONS) || defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT)
2020-10-12 20:55:39 +00:00
static uint8_t button1 ; // Blue
static uint8_t button2 ; // Green
2020-06-22 07:17:42 +00:00
# endif
2020-03-01 09:00:26 +00:00
# ifdef VARIANT_HOVERCAR
2020-06-25 18:17:55 +00:00
static uint8_t brakePressed ;
2020-03-01 09:00:26 +00:00
# endif
2020-11-12 21:41:29 +00:00
# if defined(CRUISE_CONTROL_SUPPORT) || (defined(STANDSTILL_HOLD_ENABLE) && (CTRL_TYP_SEL == FOC_CTRL) && (CTRL_MOD_REQ != SPD_MODE))
static uint8_t cruiseCtrlAcv = 0 ;
static uint8_t standstillAcv = 0 ;
# endif
2020-03-01 09:00:26 +00:00
/* =========================== Initialization Functions =========================== */
void BLDC_Init ( void ) {
/* Set BLDC controller parameters */
2020-10-12 20:55:39 +00:00
rtP_Left . b_angleMeasEna = 0 ; // Motor angle input: 0 = estimated angle, 1 = measured angle (e.g. if encoder is available)
rtP_Left . z_selPhaCurMeasABC = 0 ; // Left motor measured current phases {Green, Blue} = {iA, iB} -> do NOT change
2020-03-01 09:00:26 +00:00
rtP_Left . z_ctrlTypSel = CTRL_TYP_SEL ;
2020-10-12 20:55:39 +00:00
rtP_Left . b_diagEna = DIAG_ENA ;
2020-03-01 09:00:26 +00:00
rtP_Left . i_max = ( I_MOT_MAX * A2BIT_CONV ) < < 4 ; // fixdt(1,16,4)
rtP_Left . n_max = N_MOT_MAX < < 4 ; // fixdt(1,16,4)
rtP_Left . b_fieldWeakEna = FIELD_WEAK_ENA ;
rtP_Left . id_fieldWeakMax = ( FIELD_WEAK_MAX * A2BIT_CONV ) < < 4 ; // fixdt(1,16,4)
rtP_Left . a_phaAdvMax = PHASE_ADV_MAX < < 4 ; // fixdt(1,16,4)
rtP_Left . r_fieldWeakHi = FIELD_WEAK_HI < < 4 ; // fixdt(1,16,4)
rtP_Left . r_fieldWeakLo = FIELD_WEAK_LO < < 4 ; // fixdt(1,16,4)
rtP_Right = rtP_Left ; // Copy the Left motor parameters to the Right motor parameters
2020-10-12 20:55:39 +00:00
rtP_Right . z_selPhaCurMeasABC = 1 ; // Right motor measured current phases {Blue, Yellow} = {iB, iC} -> do NOT change
2020-03-01 09:00:26 +00:00
/* Pack LEFT motor data into RTM */
rtM_Left - > defaultParam = & rtP_Left ;
rtM_Left - > dwork = & rtDW_Left ;
rtM_Left - > inputs = & rtU_Left ;
rtM_Left - > outputs = & rtY_Left ;
/* Pack RIGHT motor data into RTM */
rtM_Right - > defaultParam = & rtP_Right ;
rtM_Right - > dwork = & rtDW_Right ;
rtM_Right - > inputs = & rtU_Right ;
rtM_Right - > outputs = & rtY_Right ;
/* Initialize BLDC controllers */
BLDC_controller_initialize ( rtM_Left ) ;
BLDC_controller_initialize ( rtM_Right ) ;
}
void Input_Lim_Init ( void ) { // Input Limitations - ! Do NOT touch !
if ( rtP_Left . b_fieldWeakEna | | rtP_Right . b_fieldWeakEna ) {
INPUT_MAX = MAX ( 1000 , FIELD_WEAK_HI ) ;
INPUT_MIN = MIN ( - 1000 , - FIELD_WEAK_HI ) ;
} else {
INPUT_MAX = 1000 ;
INPUT_MIN = - 1000 ;
}
}
void Input_Init ( void ) {
2020-06-25 18:17:55 +00:00
# if defined(CONTROL_PPM_LEFT) || defined(CONTROL_PPM_RIGHT)
2020-03-01 09:00:26 +00:00
PPM_Init ( ) ;
# endif
2020-06-25 18:17:55 +00:00
# if defined(CONTROL_PWM_LEFT) || defined(CONTROL_PWM_RIGHT)
2020-03-21 18:24:29 +00:00
PWM_Init ( ) ;
# endif
2020-03-01 09:00:26 +00:00
# ifdef CONTROL_NUNCHUK
I2C_Init ( ) ;
Nunchuk_Init ( ) ;
# endif
2020-06-21 21:14:46 +00:00
# if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
2020-03-01 09:00:26 +00:00
UART2_Init ( ) ;
# endif
2020-06-21 21:14:46 +00:00
# if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(FEEDBACK_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
2020-03-01 09:00:26 +00:00
UART3_Init ( ) ;
# endif
2020-06-21 21:14:46 +00:00
# if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
HAL_UART_Receive_DMA ( & huart2 , ( uint8_t * ) rx_buffer_L , sizeof ( rx_buffer_L ) ) ;
2020-06-25 18:17:55 +00:00
UART_DisableRxErrors ( & huart2 ) ;
2020-03-01 09:00:26 +00:00
# endif
2020-06-21 21:14:46 +00:00
# if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
HAL_UART_Receive_DMA ( & huart3 , ( uint8_t * ) rx_buffer_R , sizeof ( rx_buffer_R ) ) ;
2020-06-25 18:17:55 +00:00
UART_DisableRxErrors ( & huart3 ) ;
2020-03-01 09:00:26 +00:00
# endif
# ifdef CONTROL_ADC
uint16_t writeCheck , i_max , n_max ;
HAL_FLASH_Unlock ( ) ;
EE_Init ( ) ; /* EEPROM Init */
EE_ReadVariable ( VirtAddVarTab [ 0 ] , & writeCheck ) ;
if ( writeCheck = = FLASH_WRITE_KEY ) {
EE_ReadVariable ( VirtAddVarTab [ 1 ] , & ADC1_MIN_CAL ) ;
EE_ReadVariable ( VirtAddVarTab [ 2 ] , & ADC1_MAX_CAL ) ;
EE_ReadVariable ( VirtAddVarTab [ 3 ] , & ADC1_MID_CAL ) ;
EE_ReadVariable ( VirtAddVarTab [ 4 ] , & ADC2_MIN_CAL ) ;
EE_ReadVariable ( VirtAddVarTab [ 5 ] , & ADC2_MAX_CAL ) ;
EE_ReadVariable ( VirtAddVarTab [ 6 ] , & ADC2_MID_CAL ) ;
EE_ReadVariable ( VirtAddVarTab [ 7 ] , & i_max ) ;
EE_ReadVariable ( VirtAddVarTab [ 8 ] , & n_max ) ;
rtP_Left . i_max = i_max ;
rtP_Left . n_max = n_max ;
rtP_Right . i_max = i_max ;
rtP_Right . n_max = n_max ;
}
HAL_FLASH_Lock ( ) ;
# endif
# ifdef VARIANT_TRANSPOTTER
enable = 1 ;
HAL_FLASH_Unlock ( ) ;
EE_Init ( ) ; /* EEPROM Init */
EE_ReadVariable ( VirtAddVarTab [ 0 ] , & saveValue ) ;
HAL_FLASH_Lock ( ) ;
setDistance = saveValue / 1000.0 ;
if ( setDistance < 0.2 ) {
setDistance = 1.0 ;
}
# endif
# if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD)
I2C_Init ( ) ;
HAL_Delay ( 50 ) ;
lcd . pcf8574 . PCF_I2C_ADDRESS = 0x27 ;
lcd . pcf8574 . PCF_I2C_TIMEOUT = 5 ;
lcd . pcf8574 . i2c = hi2c2 ;
lcd . NUMBER_OF_LINES = NUMBER_OF_LINES_2 ;
lcd . type = TYPE0 ;
if ( LCD_Init ( & lcd ) ! = LCD_OK ) {
// error occured
//TODO while(1);
}
LCD_ClearDisplay ( & lcd ) ;
HAL_Delay ( 5 ) ;
LCD_SetLocation ( & lcd , 0 , 0 ) ;
# ifdef VARIANT_TRANSPOTTER
LCD_WriteString ( & lcd , " TranspOtter V2.1 " ) ;
# else
LCD_WriteString ( & lcd , " Hover V2.0 " ) ;
# endif
LCD_SetLocation ( & lcd , 0 , 1 ) ; LCD_WriteString ( & lcd , " Initializing... " ) ;
# endif
# if defined(VARIANT_TRANSPOTTER) && defined(SUPPORT_LCD)
LCD_ClearDisplay ( & lcd ) ;
HAL_Delay ( 5 ) ;
LCD_SetLocation ( & lcd , 0 , 1 ) ; LCD_WriteString ( & lcd , " Bat: " ) ;
LCD_SetLocation ( & lcd , 8 , 1 ) ; LCD_WriteString ( & lcd , " V " ) ;
LCD_SetLocation ( & lcd , 15 , 1 ) ; LCD_WriteString ( & lcd , " A " ) ;
LCD_SetLocation ( & lcd , 0 , 0 ) ; LCD_WriteString ( & lcd , " Len: " ) ;
LCD_SetLocation ( & lcd , 8 , 0 ) ; LCD_WriteString ( & lcd , " m( " ) ;
LCD_SetLocation ( & lcd , 14 , 0 ) ; LCD_WriteString ( & lcd , " m) " ) ;
# endif
}
2020-06-25 18:17:55 +00:00
/**
* @ brief Disable Rx Errors detection interrupts on UART peripheral ( since we do not want DMA to be stopped )
* The incorrect data will be filtered based on the START_FRAME and checksum .
* @ param huart : UART handle .
* @ retval None
*/
# if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) || \
defined ( DEBUG_SERIAL_USART3 ) | | defined ( CONTROL_SERIAL_USART3 ) | | defined ( SIDEBOARD_SERIAL_USART3 )
void UART_DisableRxErrors ( UART_HandleTypeDef * huart )
{
/* Disable PE (Parity Error) interrupts */
CLEAR_BIT ( huart - > Instance - > CR1 , USART_CR1_PEIE ) ;
/* Disable EIE (Frame error, noise error, overrun error) interrupts */
CLEAR_BIT ( huart - > Instance - > CR3 , USART_CR3_EIE ) ;
}
# endif
2020-03-01 09:00:26 +00:00
/* =========================== General Functions =========================== */
void poweronMelody ( void ) {
for ( int i = 8 ; i > = 0 ; i - - ) {
buzzerFreq = ( uint8_t ) i ;
HAL_Delay ( 100 ) ;
}
buzzerFreq = 0 ;
}
void shortBeep ( uint8_t freq ) {
buzzerFreq = freq ;
HAL_Delay ( 100 ) ;
buzzerFreq = 0 ;
}
2020-10-13 08:38:43 +00:00
void shortBeepMany ( uint8_t cnt , int8_t dir ) {
if ( dir > = 0 ) { // increasing tone
2020-10-20 17:54:38 +00:00
for ( uint8_t i = 2 * cnt ; i > = 2 ; i = i - 2 ) {
shortBeep ( i + 3 ) ;
2020-10-13 08:38:43 +00:00
}
} else { // decreasing tone
2020-10-20 17:54:38 +00:00
for ( uint8_t i = 2 ; i < = 2 * cnt ; i = i + 2 ) {
shortBeep ( i + 3 ) ;
2020-10-13 08:38:43 +00:00
}
2020-03-01 09:00:26 +00:00
}
}
void longBeep ( uint8_t freq ) {
buzzerFreq = freq ;
HAL_Delay ( 500 ) ;
buzzerFreq = 0 ;
}
void calcAvgSpeed ( void ) {
// Calculate measured average speed. The minus sign (-) is because motors spin in opposite directions
# if !defined(INVERT_L_DIRECTION) && !defined(INVERT_R_DIRECTION)
speedAvg = ( rtY_Left . n_mot - rtY_Right . n_mot ) / 2 ;
# elif !defined(INVERT_L_DIRECTION) && defined(INVERT_R_DIRECTION)
speedAvg = ( rtY_Left . n_mot + rtY_Right . n_mot ) / 2 ;
# elif defined(INVERT_L_DIRECTION) && !defined(INVERT_R_DIRECTION)
speedAvg = ( - rtY_Left . n_mot - rtY_Right . n_mot ) / 2 ;
# elif defined(INVERT_L_DIRECTION) && defined(INVERT_R_DIRECTION)
speedAvg = ( - rtY_Left . n_mot + rtY_Right . n_mot ) / 2 ;
# endif
// Handle the case when SPEED_COEFFICIENT sign is negative (which is when most significant bit is 1)
if ( SPEED_COEFFICIENT & ( 1 < < 16 ) ) {
speedAvg = - speedAvg ;
}
speedAvgAbs = abs ( speedAvg ) ;
}
/*
* Auto - calibration of the ADC Limits
* This function finds the Minimum , Maximum , and Middle for the ADC input
* Procedure :
* - press the power button for more than 5 sec and release after the beep sound
* - move the potentiometers freely to the min and max limits repeatedly
* - release potentiometers to the resting postion
* - press the power button to confirm or wait for the 20 sec timeout
*/
void adcCalibLim ( void ) {
if ( speedAvgAbs > 5 ) { // do not enter this mode if motors are spinning
return ;
}
# ifdef CONTROL_ADC
consoleLog ( " ADC calibration started... " ) ;
// Inititalization: MIN = a high values, MAX = a low value,
int32_t adc1_fixdt = adc_buffer . l_tx2 < < 16 ;
int32_t adc2_fixdt = adc_buffer . l_rx2 < < 16 ;
uint16_t adc_cal_timeout = 0 ;
uint16_t ADC1_MIN_temp = 4095 ;
uint16_t ADC1_MID_temp = 0 ;
uint16_t ADC1_MAX_temp = 0 ;
uint16_t ADC2_MIN_temp = 4095 ;
uint16_t ADC2_MID_temp = 0 ;
uint16_t ADC2_MAX_temp = 0 ;
adc_cal_valid = 1 ;
// Extract MIN, MAX and MID from ADC while the power button is not pressed
2020-07-19 09:24:37 +00:00
while ( ! HAL_GPIO_ReadPin ( BUTTON_PORT , BUTTON_PIN ) & & adc_cal_timeout + + < 4000 ) { // 20 sec timeout
2020-03-01 09:00:26 +00:00
filtLowPass32 ( adc_buffer . l_tx2 , FILTER , & adc1_fixdt ) ;
filtLowPass32 ( adc_buffer . l_rx2 , FILTER , & adc2_fixdt ) ;
ADC1_MID_temp = ( uint16_t ) CLAMP ( adc1_fixdt > > 16 , 0 , 4095 ) ; // convert fixed-point to integer
ADC2_MID_temp = ( uint16_t ) CLAMP ( adc2_fixdt > > 16 , 0 , 4095 ) ;
ADC1_MIN_temp = MIN ( ADC1_MIN_temp , ADC1_MID_temp ) ;
ADC1_MAX_temp = MAX ( ADC1_MAX_temp , ADC1_MID_temp ) ;
ADC2_MIN_temp = MIN ( ADC2_MIN_temp , ADC2_MID_temp ) ;
2020-07-19 09:24:37 +00:00
ADC2_MAX_temp = MAX ( ADC2_MAX_temp , ADC2_MID_temp ) ;
2020-03-01 09:00:26 +00:00
HAL_Delay ( 5 ) ;
}
// ADC calibration checks
# ifdef ADC_PROTECT_ENA
2020-10-12 20:55:39 +00:00
if ( ( ADC1_MIN_temp + 100 - ADC_PROTECT_THRESH ) > 0 & & ( ADC1_MAX_temp - 100 + ADC_PROTECT_THRESH ) < 4095 & &
( ADC2_MIN_temp + 100 - ADC_PROTECT_THRESH ) > 0 & & ( ADC2_MAX_temp - 100 + ADC_PROTECT_THRESH ) < 4095 ) {
2020-03-01 09:00:26 +00:00
adc_cal_valid = 1 ;
} else {
adc_cal_valid = 0 ;
consoleLog ( " FAIL (ADC out-of-range protection not possible) \n " ) ;
}
# endif
// Add final ADC margin to have exact 0 and MAX at the minimum and maximum ADC value
if ( adc_cal_valid & & ( ADC1_MAX_temp - ADC1_MIN_temp ) > 500 & & ( ADC2_MAX_temp - ADC2_MIN_temp ) > 500 ) {
2020-10-12 20:55:39 +00:00
ADC1_MIN_CAL = ADC1_MIN_temp + 100 ;
2020-03-01 09:00:26 +00:00
ADC1_MID_CAL = ADC1_MID_temp ;
2020-10-12 20:55:39 +00:00
ADC1_MAX_CAL = ADC1_MAX_temp - 100 ;
ADC2_MIN_CAL = ADC2_MIN_temp + 100 ;
2020-03-01 09:00:26 +00:00
ADC2_MID_CAL = ADC2_MID_temp ;
2020-10-12 20:55:39 +00:00
ADC2_MAX_CAL = ADC2_MAX_temp - 100 ;
2020-03-01 09:00:26 +00:00
consoleLog ( " OK \n " ) ;
} else {
adc_cal_valid = 0 ;
consoleLog ( " FAIL (Pots travel too short) \n " ) ;
}
# endif
}
/*
* Update Maximum Motor Current Limit ( via ADC1 ) and Maximum Speed Limit ( via ADC2 )
* Procedure :
* - press the power button for more than 5 sec and immediatelly after the beep sound press one more time shortly
* - move and hold the pots to a desired limit position for Current and Speed
* - press the power button to confirm or wait for the 10 sec timeout
*/
void updateCurSpdLim ( void ) {
if ( speedAvgAbs > 5 ) { // do not enter this mode if motors are spinning
return ;
}
# ifdef CONTROL_ADC
consoleLog ( " Torque and Speed limits update started... " ) ;
int32_t adc1_fixdt = adc_buffer . l_tx2 < < 16 ;
int32_t adc2_fixdt = adc_buffer . l_rx2 < < 16 ;
uint16_t cur_spd_timeout = 0 ;
uint16_t cur_factor ; // fixdt(0,16,16)
uint16_t spd_factor ; // fixdt(0,16,16)
// Wait for the power button press
2020-07-19 09:24:37 +00:00
while ( ! HAL_GPIO_ReadPin ( BUTTON_PORT , BUTTON_PIN ) & & cur_spd_timeout + + < 2000 ) { // 10 sec timeout
2020-03-01 09:00:26 +00:00
filtLowPass32 ( adc_buffer . l_tx2 , FILTER , & adc1_fixdt ) ;
filtLowPass32 ( adc_buffer . l_rx2 , FILTER , & adc2_fixdt ) ;
HAL_Delay ( 5 ) ;
}
// Calculate scaling factors
cur_factor = CLAMP ( ( adc1_fixdt - ( ADC1_MIN_CAL < < 16 ) ) / ( ADC1_MAX_CAL - ADC1_MIN_CAL ) , 6553 , 65535 ) ; // ADC1, MIN_cur(10%) = 1.5 A
spd_factor = CLAMP ( ( adc2_fixdt - ( ADC2_MIN_CAL < < 16 ) ) / ( ADC2_MAX_CAL - ADC2_MIN_CAL ) , 3276 , 65535 ) ; // ADC2, MIN_spd(5%) = 50 rpm
// Update maximum limits
rtP_Left . i_max = ( int16_t ) ( ( I_MOT_MAX * A2BIT_CONV * cur_factor ) > > 12 ) ; // fixdt(0,16,16) to fixdt(1,16,4)
rtP_Left . n_max = ( int16_t ) ( ( N_MOT_MAX * spd_factor ) > > 12 ) ; // fixdt(0,16,16) to fixdt(1,16,4)
rtP_Right . i_max = rtP_Left . i_max ;
rtP_Right . n_max = rtP_Left . n_max ;
cur_spd_valid = 1 ;
consoleLog ( " OK \n " ) ;
# endif
}
/*
* Save Configuration to Flash
* This function makes sure data is not lost after power - off
*/
void saveConfig ( ) {
# ifdef VARIANT_TRANSPOTTER
if ( saveValue_valid ) {
HAL_FLASH_Unlock ( ) ;
EE_WriteVariable ( VirtAddVarTab [ 0 ] , saveValue ) ;
HAL_FLASH_Lock ( ) ;
}
# endif
# ifdef CONTROL_ADC
if ( adc_cal_valid | | cur_spd_valid ) {
HAL_FLASH_Unlock ( ) ;
EE_WriteVariable ( VirtAddVarTab [ 0 ] , FLASH_WRITE_KEY ) ;
EE_WriteVariable ( VirtAddVarTab [ 1 ] , ADC1_MIN_CAL ) ;
EE_WriteVariable ( VirtAddVarTab [ 2 ] , ADC1_MAX_CAL ) ;
EE_WriteVariable ( VirtAddVarTab [ 3 ] , ADC1_MID_CAL ) ;
EE_WriteVariable ( VirtAddVarTab [ 4 ] , ADC2_MIN_CAL ) ;
EE_WriteVariable ( VirtAddVarTab [ 5 ] , ADC2_MAX_CAL ) ;
EE_WriteVariable ( VirtAddVarTab [ 6 ] , ADC2_MID_CAL ) ;
EE_WriteVariable ( VirtAddVarTab [ 7 ] , rtP_Left . i_max ) ;
EE_WriteVariable ( VirtAddVarTab [ 8 ] , rtP_Left . n_max ) ;
HAL_FLASH_Lock ( ) ;
}
# endif
}
2020-06-23 17:58:36 +00:00
/*
* Add Dead - band to a signal
2020-07-20 17:36:24 +00:00
* This function realizes a dead - band around 0 and scales the input between [ out_min , out_max ]
2020-06-23 17:58:36 +00:00
*/
2020-07-20 17:36:24 +00:00
int addDeadBand ( int16_t u , int16_t deadBand , int16_t in_min , int16_t in_max , int16_t out_min , int16_t out_max ) {
2020-06-25 18:17:55 +00:00
# if defined(CONTROL_PPM_LEFT) || defined(CONTROL_PPM_RIGHT) || defined(CONTROL_PWM_LEFT) || defined(CONTROL_PWM_RIGHT)
2020-06-23 17:58:36 +00:00
int outVal = 0 ;
if ( u > - deadBand & & u < deadBand ) {
outVal = 0 ;
} else if ( u > 0 ) {
2020-07-20 17:36:24 +00:00
outVal = ( out_max * CLAMP ( u - deadBand , 0 , in_max - deadBand ) ) / ( in_max - deadBand ) ;
2020-06-23 17:58:36 +00:00
} else {
2020-07-20 17:36:24 +00:00
outVal = ( out_min * CLAMP ( u + deadBand , in_min + deadBand , 0 ) ) / ( in_min + deadBand ) ;
2020-06-23 17:58:36 +00:00
}
return outVal ;
# else
return 0 ;
# endif
}
2020-07-19 09:24:37 +00:00
/*
* Standstill Hold Function
2020-11-12 21:41:29 +00:00
* This function uses Cruise Control to provide an anti - roll functionality at standstill .
* Only available and makes sense for FOC VOLTAGE or FOC TORQUE mode .
2020-07-19 09:24:37 +00:00
*
2020-11-12 21:41:29 +00:00
* Input : none
* Output : standstillAcv
2020-07-19 09:24:37 +00:00
*/
2020-11-12 21:41:29 +00:00
void standstillHold ( void ) {
2020-07-19 09:24:37 +00:00
# if defined(STANDSTILL_HOLD_ENABLE) && (CTRL_TYP_SEL == FOC_CTRL) && (CTRL_MOD_REQ != SPD_MODE)
2020-11-12 21:41:29 +00:00
if ( ! rtP_Left . b_cruiseCtrlEna ) { // If Stanstill in NOT Active -> try Activation
if ( ( ( cmd1 > 50 | | cmd2 < - 50 ) & & speedAvgAbs < 30 ) // Check if Brake is pressed AND measured speed is small
| | ( cmd2 < 20 & & speedAvgAbs < 5 ) ) { // OR Throttle is small AND measured speed is very small
rtP_Left . n_cruiseMotTgt = 0 ;
rtP_Right . n_cruiseMotTgt = 0 ;
rtP_Left . b_cruiseCtrlEna = 1 ;
rtP_Right . b_cruiseCtrlEna = 1 ;
standstillAcv = 1 ;
}
}
else { // If Stanstill is Active -> try Deactivation
if ( cmd1 < 20 & & cmd2 > 50 & & ! cruiseCtrlAcv ) { // Check if Brake is released AND Throttle is pressed AND no Cruise Control
rtP_Left . b_cruiseCtrlEna = 0 ;
rtP_Right . b_cruiseCtrlEna = 0 ;
standstillAcv = 0 ;
2020-07-19 09:24:37 +00:00
}
}
# endif
}
/*
* Electric Brake Function
* In case of TORQUE mode , this function replaces the motor " freewheel " with a constant braking when the input torque request is 0.
* This is useful when a small amount of motor braking is desired instead of " freewheel " .
*
* Input : speedBlend = fixdt ( 0 , 16 , 15 ) , reverseDir = { 0 , 1 }
* Output : cmd2 ( Throtle ) with brake component included
*/
void electricBrake ( uint16_t speedBlend , uint8_t reverseDir ) {
# if defined(ELECTRIC_BRAKE_ENABLE) && (CTRL_TYP_SEL == FOC_CTRL) && (CTRL_MOD_REQ == TRQ_MODE)
int16_t brakeVal ;
// Make sure the Brake pedal is opposite to the direction of motion AND it goes to 0 as we reach standstill (to avoid Reverse driving)
if ( speedAvg > 0 ) {
brakeVal = ( int16_t ) ( ( - ELECTRIC_BRAKE_MAX * speedBlend ) > > 15 ) ;
} else {
brakeVal = ( int16_t ) ( ( ELECTRIC_BRAKE_MAX * speedBlend ) > > 15 ) ;
}
// Check if direction is reversed
if ( reverseDir ) {
brakeVal = - brakeVal ;
}
// Calculate the new cmd2 with brake component included
if ( cmd2 > = 0 & & cmd2 < ELECTRIC_BRAKE_THRES ) {
cmd2 = MAX ( brakeVal , ( ( ELECTRIC_BRAKE_THRES - cmd2 ) * brakeVal ) / ELECTRIC_BRAKE_THRES ) ;
} else if ( cmd2 > = - ELECTRIC_BRAKE_THRES & & cmd2 < 0 ) {
cmd2 = MIN ( brakeVal , ( ( ELECTRIC_BRAKE_THRES + cmd2 ) * brakeVal ) / ELECTRIC_BRAKE_THRES ) ;
} else if ( cmd2 > = ELECTRIC_BRAKE_THRES ) {
cmd2 = MAX ( brakeVal , ( ( cmd2 - ELECTRIC_BRAKE_THRES ) * INPUT_MAX ) / ( INPUT_MAX - ELECTRIC_BRAKE_THRES ) ) ;
} else { // when (cmd2 < -ELECTRIC_BRAKE_THRES)
cmd2 = MIN ( brakeVal , ( ( cmd2 + ELECTRIC_BRAKE_THRES ) * INPUT_MIN ) / ( INPUT_MIN + ELECTRIC_BRAKE_THRES ) ) ;
}
# endif
}
2020-03-01 09:00:26 +00:00
2020-10-20 17:54:38 +00:00
/*
* Cruise Control Function
* This function activates / deactivates cruise control .
*
* Input : button ( as a pulse )
2020-11-12 21:41:29 +00:00
* Output : cruiseCtrlAcv
2020-10-20 17:54:38 +00:00
*/
void cruiseControl ( uint8_t button ) {
# ifdef CRUISE_CONTROL_SUPPORT
2020-11-12 21:41:29 +00:00
if ( button & & ! rtP_Left . b_cruiseCtrlEna ) { // Cruise control activated
2020-10-20 17:54:38 +00:00
rtP_Left . n_cruiseMotTgt = rtY_Left . n_mot ;
rtP_Right . n_cruiseMotTgt = rtY_Right . n_mot ;
rtP_Left . b_cruiseCtrlEna = 1 ;
rtP_Right . b_cruiseCtrlEna = 1 ;
2020-11-12 21:41:29 +00:00
cruiseCtrlAcv = 1 ;
shortBeepMany ( 2 , 1 ) ; // 200 ms beep delay. Acts as a debounce also.
} else if ( button & & rtP_Left . b_cruiseCtrlEna & & ! standstillAcv ) { // Cruise control deactivated if no Standstill Hold is active
2020-10-20 17:54:38 +00:00
rtP_Left . b_cruiseCtrlEna = 0 ;
rtP_Right . b_cruiseCtrlEna = 0 ;
2020-11-12 21:41:29 +00:00
cruiseCtrlAcv = 0 ;
2020-10-20 17:54:38 +00:00
shortBeepMany ( 2 , - 1 ) ;
}
# endif
}
2020-03-01 09:00:26 +00:00
/* =========================== Poweroff Functions =========================== */
void poweroff ( void ) {
buzzerPattern = 0 ;
enable = 0 ;
consoleLog ( " -- Motors disabled -- \r \n " ) ;
for ( int i = 0 ; i < 8 ; i + + ) {
buzzerFreq = ( uint8_t ) i ;
HAL_Delay ( 100 ) ;
}
saveConfig ( ) ;
HAL_GPIO_WritePin ( OFF_PORT , OFF_PIN , GPIO_PIN_RESET ) ;
while ( 1 ) { }
}
void poweroffPressCheck ( void ) {
# if defined(CONTROL_ADC)
2020-06-21 21:14:46 +00:00
if ( HAL_GPIO_ReadPin ( BUTTON_PORT , BUTTON_PIN ) ) {
enable = 0 ;
uint16_t cnt_press = 0 ;
while ( HAL_GPIO_ReadPin ( BUTTON_PORT , BUTTON_PIN ) ) {
HAL_Delay ( 10 ) ;
if ( cnt_press + + = = 5 * 100 ) { shortBeep ( 5 ) ; }
2020-03-01 09:00:26 +00:00
}
2020-06-21 21:14:46 +00:00
if ( cnt_press > = 5 * 100 ) { // Check if press is more than 5 sec
HAL_Delay ( 300 ) ;
if ( HAL_GPIO_ReadPin ( BUTTON_PORT , BUTTON_PIN ) ) { // Double press: Adjust Max Current, Max Speed
while ( HAL_GPIO_ReadPin ( BUTTON_PORT , BUTTON_PIN ) ) { HAL_Delay ( 10 ) ; }
longBeep ( 8 ) ;
updateCurSpdLim ( ) ;
shortBeep ( 5 ) ;
} else { // Long press: Calibrate ADC Limits
longBeep ( 16 ) ;
adcCalibLim ( ) ;
shortBeep ( 5 ) ;
2020-03-01 09:00:26 +00:00
}
2020-06-21 21:14:46 +00:00
} else { // Short press: power off
poweroff ( ) ;
2020-03-01 09:00:26 +00:00
}
2020-06-21 21:14:46 +00:00
}
# elif defined(VARIANT_TRANSPOTTER)
if ( HAL_GPIO_ReadPin ( BUTTON_PORT , BUTTON_PIN ) ) {
enable = 0 ;
while ( HAL_GPIO_ReadPin ( BUTTON_PORT , BUTTON_PIN ) ) { HAL_Delay ( 10 ) ; }
shortBeep ( 5 ) ;
HAL_Delay ( 300 ) ;
2020-03-01 09:00:26 +00:00
if ( HAL_GPIO_ReadPin ( BUTTON_PORT , BUTTON_PIN ) ) {
2020-06-21 21:14:46 +00:00
while ( HAL_GPIO_ReadPin ( BUTTON_PORT , BUTTON_PIN ) ) { HAL_Delay ( 10 ) ; }
longBeep ( 5 ) ;
HAL_Delay ( 350 ) ;
poweroff ( ) ;
} else {
setDistance + = 0.25 ;
if ( setDistance > 2.6 ) {
setDistance = 0.5 ;
2020-03-01 09:00:26 +00:00
}
2020-06-21 21:14:46 +00:00
shortBeep ( setDistance / 0.25 ) ;
saveValue = setDistance * 1000 ;
saveValue_valid = 1 ;
2020-03-01 09:00:26 +00:00
}
2020-06-21 21:14:46 +00:00
}
# else
if ( HAL_GPIO_ReadPin ( BUTTON_PORT , BUTTON_PIN ) ) {
enable = 0 ; // disable motors
while ( HAL_GPIO_ReadPin ( BUTTON_PORT , BUTTON_PIN ) ) { } // wait until button is released
poweroff ( ) ; // release power-latch
}
# endif
2020-03-01 09:00:26 +00:00
}
/* =========================== Read Command Function =========================== */
void readCommand ( void ) {
# if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK)
if ( nunchuk_connected ! = 0 ) {
Nunchuk_Read ( ) ;
cmd1 = CLAMP ( ( nunchuk_data [ 0 ] - 127 ) * 8 , INPUT_MIN , INPUT_MAX ) ; // x - axis. Nunchuk joystick readings range 30 - 230
cmd2 = CLAMP ( ( nunchuk_data [ 1 ] - 128 ) * 8 , INPUT_MIN , INPUT_MAX ) ; // y - axis
# ifdef SUPPORT_BUTTONS
button1 = ( uint8_t ) nunchuk_data [ 5 ] & 1 ;
button2 = ( uint8_t ) ( nunchuk_data [ 5 ] > > 1 ) & 1 ;
# endif
}
# endif
2020-06-25 18:17:55 +00:00
# if defined(CONTROL_PPM_LEFT) || defined(CONTROL_PPM_RIGHT)
2020-07-20 18:33:42 +00:00
cmd1 = addDeadBand ( ( ppm_captured_value [ 0 ] - 500 ) * 2 , PPM_DEADBAND , PPM_CH1_MIN , PPM_CH1_MAX , INPUT_MIN , INPUT_MAX ) ;
cmd2 = addDeadBand ( ( ppm_captured_value [ 1 ] - 500 ) * 2 , PPM_DEADBAND , PPM_CH2_MIN , PPM_CH2_MAX , INPUT_MIN , INPUT_MAX ) ;
2020-03-01 09:00:26 +00:00
# ifdef SUPPORT_BUTTONS
2020-03-24 18:57:08 +00:00
button1 = ppm_captured_value [ 5 ] > 500 ;
2020-03-01 09:00:26 +00:00
button2 = 0 ;
2020-06-25 18:17:55 +00:00
# elif defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT)
button1 = ! HAL_GPIO_ReadPin ( BUTTON1_PORT , BUTTON1_PIN ) ;
button2 = ! HAL_GPIO_ReadPin ( BUTTON2_PORT , BUTTON2_PIN ) ;
2020-03-01 09:00:26 +00:00
# endif
// float scale = ppm_captured_value[2] / 1000.0f; // not used for now, uncomment if needed
# endif
2020-06-25 18:17:55 +00:00
# if defined(CONTROL_PWM_LEFT) || defined(CONTROL_PWM_RIGHT)
2020-07-20 17:36:24 +00:00
cmd1 = addDeadBand ( ( pwm_captured_ch1_value - 500 ) * 2 , PWM_DEADBAND , PWM_CH1_MIN , PWM_CH1_MAX , INPUT_MIN , INPUT_MAX ) ;
2020-07-20 18:33:42 +00:00
# if !defined(VARIANT_SKATEBOARD)
2020-07-20 17:36:24 +00:00
cmd2 = addDeadBand ( ( pwm_captured_ch2_value - 500 ) * 2 , PWM_DEADBAND , PWM_CH2_MIN , PWM_CH2_MAX , INPUT_MIN , INPUT_MAX ) ;
2020-07-20 18:33:42 +00:00
# else
cmd2 = addDeadBand ( ( pwm_captured_ch2_value - 500 ) * 2 , PWM_DEADBAND , PWM_CH2_MIN , PWM_CH2_MAX , PWM_CH2_OUT_MIN , INPUT_MAX ) ;
# endif
2020-06-25 18:17:55 +00:00
# if defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT)
button1 = ! HAL_GPIO_ReadPin ( BUTTON1_PORT , BUTTON1_PIN ) ;
button2 = ! HAL_GPIO_ReadPin ( BUTTON2_PORT , BUTTON2_PIN ) ;
2020-03-24 18:57:08 +00:00
# endif
2020-03-21 18:24:29 +00:00
# endif
2020-03-01 09:00:26 +00:00
# ifdef CONTROL_ADC
// ADC values range: 0-4095, see ADC-calibration in config.h
# ifdef ADC1_MID_POT
cmd1 = CLAMP ( ( adc_buffer . l_tx2 - ADC1_MID_CAL ) * INPUT_MAX / ( ADC1_MAX_CAL - ADC1_MID_CAL ) , 0 , INPUT_MAX )
2020-06-30 16:09:37 +00:00
+ CLAMP ( ( ADC1_MID_CAL - adc_buffer . l_tx2 ) * INPUT_MIN / ( ADC1_MID_CAL - ADC1_MIN_CAL ) , INPUT_MIN , 0 ) ; // ADC1
2020-03-01 09:00:26 +00:00
# else
cmd1 = CLAMP ( ( adc_buffer . l_tx2 - ADC1_MIN_CAL ) * INPUT_MAX / ( ADC1_MAX_CAL - ADC1_MIN_CAL ) , 0 , INPUT_MAX ) ; // ADC1
# endif
# ifdef ADC2_MID_POT
cmd2 = CLAMP ( ( adc_buffer . l_rx2 - ADC2_MID_CAL ) * INPUT_MAX / ( ADC2_MAX_CAL - ADC2_MID_CAL ) , 0 , INPUT_MAX )
2020-06-30 16:09:37 +00:00
+ CLAMP ( ( ADC2_MID_CAL - adc_buffer . l_rx2 ) * INPUT_MIN / ( ADC2_MID_CAL - ADC2_MIN_CAL ) , INPUT_MIN , 0 ) ; // ADC2
2020-03-01 09:00:26 +00:00
# else
cmd2 = CLAMP ( ( adc_buffer . l_rx2 - ADC2_MIN_CAL ) * INPUT_MAX / ( ADC2_MAX_CAL - ADC2_MIN_CAL ) , 0 , INPUT_MAX ) ; // ADC2
# endif
# ifdef ADC_PROTECT_ENA
if ( adc_buffer . l_tx2 > = ( ADC1_MIN_CAL - ADC_PROTECT_THRESH ) & & adc_buffer . l_tx2 < = ( ADC1_MAX_CAL + ADC_PROTECT_THRESH ) & &
adc_buffer . l_rx2 > = ( ADC2_MIN_CAL - ADC_PROTECT_THRESH ) & & adc_buffer . l_rx2 < = ( ADC2_MAX_CAL + ADC_PROTECT_THRESH ) ) {
if ( timeoutFlagADC ) { // Check for previous timeout flag
if ( timeoutCntADC - - < = 0 ) // Timeout de-qualification
timeoutFlagADC = 0 ; // Timeout flag cleared
} else {
timeoutCntADC = 0 ; // Reset the timeout counter
}
} else {
if ( timeoutCntADC + + > = ADC_PROTECT_TIMEOUT ) { // Timeout qualification
timeoutFlagADC = 1 ; // Timeout detected
timeoutCntADC = ADC_PROTECT_TIMEOUT ; // Limit timout counter value
}
2020-07-19 09:24:37 +00:00
}
2020-03-01 09:00:26 +00:00
# endif
2020-06-25 18:17:55 +00:00
# if defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT)
button1 = ! HAL_GPIO_ReadPin ( BUTTON1_PORT , BUTTON1_PIN ) ;
button2 = ! HAL_GPIO_ReadPin ( BUTTON2_PORT , BUTTON2_PIN ) ;
# endif
2020-07-01 17:50:32 +00:00
timeoutCnt = 0 ;
2020-03-01 09:00:26 +00:00
# endif
# if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
// Handle received data validity, timeout and fix out-of-sync if necessary
2020-06-21 21:14:46 +00:00
# ifdef CONTROL_IBUS
for ( uint8_t i = 0 ; i < ( IBUS_NUM_CHANNELS * 2 ) ; i + = 2 ) {
ibus_captured_value [ ( i / 2 ) ] = CLAMP ( command . channels [ i ] + ( command . channels [ i + 1 ] < < 8 ) - 1000 , 0 , INPUT_MAX ) ; // 1000-2000 -> 0-1000
2020-03-01 09:00:26 +00:00
}
2020-06-21 21:14:46 +00:00
cmd1 = CLAMP ( ( ibus_captured_value [ 0 ] - 500 ) * 2 , INPUT_MIN , INPUT_MAX ) ;
cmd2 = CLAMP ( ( ibus_captured_value [ 1 ] - 500 ) * 2 , INPUT_MIN , INPUT_MAX ) ;
2020-03-01 09:00:26 +00:00
# else
2020-06-21 21:14:46 +00:00
if ( IN_RANGE ( command . steer , INPUT_MIN , INPUT_MAX ) & & IN_RANGE ( command . speed , INPUT_MIN , INPUT_MAX ) ) {
cmd1 = command . steer ;
cmd2 = command . speed ;
}
# endif
2020-03-01 09:00:26 +00:00
2020-06-25 18:17:55 +00:00
# if defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT)
button1 = ! HAL_GPIO_ReadPin ( BUTTON1_PORT , BUTTON1_PIN ) ;
button2 = ! HAL_GPIO_ReadPin ( BUTTON2_PORT , BUTTON2_PIN ) ;
# endif
2020-07-01 17:50:32 +00:00
timeoutCnt = 0 ;
2020-03-01 09:00:26 +00:00
# endif
2020-06-21 21:14:46 +00:00
# if defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
if ( timeoutCntSerial_L + + > = SERIAL_TIMEOUT ) { // Timeout qualification
timeoutFlagSerial_L = 1 ; // Timeout detected
timeoutCntSerial_L = SERIAL_TIMEOUT ; // Limit timout counter value
2020-03-01 09:00:26 +00:00
}
timeoutFlagSerial = timeoutFlagSerial_L ;
# endif
2020-06-21 21:14:46 +00:00
# if defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
if ( timeoutCntSerial_R + + > = SERIAL_TIMEOUT ) { // Timeout qualification
timeoutFlagSerial_R = 1 ; // Timeout detected
timeoutCntSerial_R = SERIAL_TIMEOUT ; // Limit timout counter value
2020-03-01 09:00:26 +00:00
}
timeoutFlagSerial = timeoutFlagSerial_R ;
# endif
# if defined(SIDEBOARD_SERIAL_USART2) && defined(SIDEBOARD_SERIAL_USART3)
2020-06-01 18:08:47 +00:00
timeoutFlagSerial = timeoutFlagSerial_L | | timeoutFlagSerial_R ;
2020-03-01 09:00:26 +00:00
# endif
# ifdef VARIANT_HOVERCAR
2020-07-01 17:50:32 +00:00
brakePressed = ( uint8_t ) ( cmd1 > 50 ) ;
2020-03-01 09:00:26 +00:00
# endif
# ifdef VARIANT_TRANSPOTTER
# ifdef GAMETRAK_CONNECTION_NORMAL
cmd1 = adc_buffer . l_rx2 ;
cmd2 = adc_buffer . l_tx2 ;
# endif
# ifdef GAMETRAK_CONNECTION_ALTERNATE
cmd1 = adc_buffer . l_tx2 ;
cmd2 = adc_buffer . l_rx2 ;
# endif
# endif
2020-07-19 09:24:37 +00:00
if ( timeoutFlagADC | | timeoutFlagSerial | | timeoutCnt > TIMEOUT ) { // In case of timeout bring the system to a Safe State
ctrlModReq = OPEN_MODE ; // Request OPEN_MODE. This will bring the motor power to 0 in a controlled way
cmd1 = 0 ;
cmd2 = 0 ;
} else {
ctrlModReq = ctrlModReqRaw ; // Follow the Mode request
}
2020-10-12 20:55:39 +00:00
# if defined(CRUISE_CONTROL_SUPPORT) && (defined(SUPPORT_BUTTONS) || defined(SUPPORT_BUTTONS_LEFT) || defined(SUPPORT_BUTTONS_RIGHT))
2020-10-20 17:54:38 +00:00
cruiseControl ( button1 ) ; // Cruise control activation/deactivation
2020-10-12 20:55:39 +00:00
# endif
2020-06-21 21:14:46 +00:00
}
/*
* Check for new data received on USART2 with DMA : refactored function from https : //github.com/MaJerle/stm32-usart-uart-dma-rx-tx
* - this function is called for every USART IDLE line detection , in the USART interrupt handler
*/
void usart2_rx_check ( void )
{
2020-06-23 17:58:36 +00:00
# if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
2020-06-25 18:17:55 +00:00
static uint32_t old_pos ;
2020-06-21 21:14:46 +00:00
uint32_t pos ;
pos = rx_buffer_L_len - __HAL_DMA_GET_COUNTER ( huart2 . hdmarx ) ; // Calculate current position in buffer
# endif
# if defined(DEBUG_SERIAL_USART2)
if ( pos ! = old_pos ) { // Check change in received data
if ( pos > old_pos ) { // "Linear" buffer mode: check if current position is over previous one
usart_process_debug ( & rx_buffer_L [ old_pos ] , pos - old_pos ) ; // Process data
} else { // "Overflow" buffer mode
usart_process_debug ( & rx_buffer_L [ old_pos ] , rx_buffer_L_len - old_pos ) ; // First Process data from the end of buffer
if ( pos > 0 ) { // Check and continue with beginning of buffer
usart_process_debug ( & rx_buffer_L [ 0 ] , pos ) ; // Process remaining data
}
}
}
# endif // DEBUG_SERIAL_USART2
# ifdef CONTROL_SERIAL_USART2
uint8_t * ptr ;
if ( pos ! = old_pos ) { // Check change in received data
ptr = ( uint8_t * ) & command_raw ; // Initialize the pointer with command_raw address
if ( pos > old_pos & & ( pos - old_pos ) = = command_len ) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
memcpy ( ptr , & rx_buffer_L [ old_pos ] , command_len ) ; // Copy data. This is possible only if command_raw is contiguous! (meaning all the structure members have the same size)
usart_process_command ( & command_raw , & command , 2 ) ; // Process data
} else if ( ( rx_buffer_L_len - old_pos + pos ) = = command_len ) { // "Overflow" buffer mode: check if data length equals expected length
memcpy ( ptr , & rx_buffer_L [ old_pos ] , rx_buffer_L_len - old_pos ) ; // First copy data from the end of buffer
if ( pos > 0 ) { // Check and continue with beginning of buffer
ptr + = rx_buffer_L_len - old_pos ; // Move to correct position in command_raw
memcpy ( ptr , & rx_buffer_L [ 0 ] , pos ) ; // Copy remaining data
}
usart_process_command ( & command_raw , & command , 2 ) ; // Process data
}
}
# endif // CONTROL_SERIAL_USART2
# ifdef SIDEBOARD_SERIAL_USART2
uint8_t * ptr ;
if ( pos ! = old_pos ) { // Check change in received data
ptr = ( uint8_t * ) & Sideboard_L_raw ; // Initialize the pointer with Sideboard_raw address
if ( pos > old_pos & & ( pos - old_pos ) = = Sideboard_L_len ) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
memcpy ( ptr , & rx_buffer_L [ old_pos ] , Sideboard_L_len ) ; // Copy data. This is possible only if Sideboard_raw is contiguous! (meaning all the structure members have the same size)
usart_process_sideboard ( & Sideboard_L_raw , & Sideboard_L , 2 ) ; // Process data
} else if ( ( rx_buffer_L_len - old_pos + pos ) = = Sideboard_L_len ) { // "Overflow" buffer mode: check if data length equals expected length
memcpy ( ptr , & rx_buffer_L [ old_pos ] , rx_buffer_L_len - old_pos ) ; // First copy data from the end of buffer
if ( pos > 0 ) { // Check and continue with beginning of buffer
ptr + = rx_buffer_L_len - old_pos ; // Move to correct position in Sideboard_raw
memcpy ( ptr , & rx_buffer_L [ 0 ] , pos ) ; // Copy remaining data
}
usart_process_sideboard ( & Sideboard_L_raw , & Sideboard_L , 2 ) ; // Process data
}
}
# endif // SIDEBOARD_SERIAL_USART2
# if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2)
old_pos = pos ; // Update old position
if ( old_pos = = rx_buffer_L_len ) { // Check and manually update if we reached end of buffer
old_pos = 0 ;
}
# endif
}
/*
* Check for new data received on USART3 with DMA : refactored function from https : //github.com/MaJerle/stm32-usart-uart-dma-rx-tx
* - this function is called for every USART IDLE line detection , in the USART interrupt handler
*/
void usart3_rx_check ( void )
{
# if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
2020-06-25 18:17:55 +00:00
static uint32_t old_pos ;
2020-06-21 21:14:46 +00:00
uint32_t pos ;
pos = rx_buffer_R_len - __HAL_DMA_GET_COUNTER ( huart3 . hdmarx ) ; // Calculate current position in buffer
# endif
# if defined(DEBUG_SERIAL_USART3)
if ( pos ! = old_pos ) { // Check change in received data
if ( pos > old_pos ) { // "Linear" buffer mode: check if current position is over previous one
usart_process_debug ( & rx_buffer_R [ old_pos ] , pos - old_pos ) ; // Process data
} else { // "Overflow" buffer mode
usart_process_debug ( & rx_buffer_R [ old_pos ] , rx_buffer_R_len - old_pos ) ; // First Process data from the end of buffer
if ( pos > 0 ) { // Check and continue with beginning of buffer
usart_process_debug ( & rx_buffer_R [ 0 ] , pos ) ; // Process remaining data
}
}
}
# endif // DEBUG_SERIAL_USART3
# ifdef CONTROL_SERIAL_USART3
uint8_t * ptr ;
if ( pos ! = old_pos ) { // Check change in received data
ptr = ( uint8_t * ) & command_raw ; // Initialize the pointer with command_raw address
if ( pos > old_pos & & ( pos - old_pos ) = = command_len ) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
memcpy ( ptr , & rx_buffer_R [ old_pos ] , command_len ) ; // Copy data. This is possible only if command_raw is contiguous! (meaning all the structure members have the same size)
usart_process_command ( & command_raw , & command , 3 ) ; // Process data
} else if ( ( rx_buffer_R_len - old_pos + pos ) = = command_len ) { // "Overflow" buffer mode: check if data length equals expected length
memcpy ( ptr , & rx_buffer_R [ old_pos ] , rx_buffer_R_len - old_pos ) ; // First copy data from the end of buffer
if ( pos > 0 ) { // Check and continue with beginning of buffer
ptr + = rx_buffer_R_len - old_pos ; // Move to correct position in command_raw
memcpy ( ptr , & rx_buffer_R [ 0 ] , pos ) ; // Copy remaining data
}
usart_process_command ( & command_raw , & command , 3 ) ; // Process data
}
}
# endif // CONTROL_SERIAL_USART3
# ifdef SIDEBOARD_SERIAL_USART3
uint8_t * ptr ;
if ( pos ! = old_pos ) { // Check change in received data
ptr = ( uint8_t * ) & Sideboard_R_raw ; // Initialize the pointer with Sideboard_raw address
if ( pos > old_pos & & ( pos - old_pos ) = = Sideboard_R_len ) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
memcpy ( ptr , & rx_buffer_R [ old_pos ] , Sideboard_R_len ) ; // Copy data. This is possible only if Sideboard_raw is contiguous! (meaning all the structure members have the same size)
usart_process_sideboard ( & Sideboard_R_raw , & Sideboard_R , 3 ) ; // Process data
} else if ( ( rx_buffer_R_len - old_pos + pos ) = = Sideboard_R_len ) { // "Overflow" buffer mode: check if data length equals expected length
memcpy ( ptr , & rx_buffer_R [ old_pos ] , rx_buffer_R_len - old_pos ) ; // First copy data from the end of buffer
if ( pos > 0 ) { // Check and continue with beginning of buffer
ptr + = rx_buffer_R_len - old_pos ; // Move to correct position in Sideboard_raw
memcpy ( ptr , & rx_buffer_R [ 0 ] , pos ) ; // Copy remaining data
}
usart_process_sideboard ( & Sideboard_R_raw , & Sideboard_R , 3 ) ; // Process data
}
}
# endif // SIDEBOARD_SERIAL_USART3
# if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3)
old_pos = pos ; // Update old position
if ( old_pos = = rx_buffer_R_len ) { // Check and manually update if we reached end of buffer
old_pos = 0 ;
}
# endif
}
/*
* Process Rx debug user command input
*/
# if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3)
void usart_process_debug ( uint8_t * userCommand , uint32_t len )
{
for ( ; len > 0 ; len - - , userCommand + + ) {
if ( * userCommand ! = ' \n ' & & * userCommand ! = ' \r ' ) { // Do not accept 'new line' and 'carriage return' commands
consoleLog ( " -- Command received -- \r \n " ) ;
// handle_input(*userCommand); // -> Create this function to handle the user commands
}
2020-06-25 18:17:55 +00:00
}
2020-06-21 21:14:46 +00:00
}
# endif // SERIAL_DEBUG
/*
* Process command Rx data
* - if the command_in data is valid ( correct START_FRAME and checksum ) copy the command_in to command_out
*/
# if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
void usart_process_command ( SerialCommand * command_in , SerialCommand * command_out , uint8_t usart_idx )
{
# ifdef CONTROL_IBUS
if ( command_in - > start = = IBUS_LENGTH & & command_in - > type = = IBUS_COMMAND ) {
ibus_chksum = 0xFFFF - IBUS_LENGTH - IBUS_COMMAND ;
for ( uint8_t i = 0 ; i < ( IBUS_NUM_CHANNELS * 2 ) ; i + + ) {
ibus_chksum - = command_in - > channels [ i ] ;
}
if ( ibus_chksum = = ( uint16_t ) ( ( command_in - > checksumh < < 8 ) + command_in - > checksuml ) ) {
* command_out = * command_in ;
if ( usart_idx = = 2 ) { // Sideboard USART2
# ifdef CONTROL_SERIAL_USART2
timeoutCntSerial_L = 0 ; // Reset timeout counter
timeoutFlagSerial_L = 0 ; // Clear timeout flag
# endif
} else if ( usart_idx = = 3 ) { // Sideboard USART3
# ifdef CONTROL_SERIAL_USART3
timeoutCntSerial_R = 0 ; // Reset timeout counter
timeoutFlagSerial_R = 0 ; // Clear timeout flag
# endif
}
}
}
# else
uint16_t checksum ;
if ( command_in - > start = = SERIAL_START_FRAME ) {
checksum = ( uint16_t ) ( command_in - > start ^ command_in - > steer ^ command_in - > speed ) ;
if ( command_in - > checksum = = checksum ) {
* command_out = * command_in ;
if ( usart_idx = = 2 ) { // Sideboard USART2
# ifdef CONTROL_SERIAL_USART2
timeoutCntSerial_L = 0 ; // Reset timeout counter
timeoutFlagSerial_L = 0 ; // Clear timeout flag
# endif
} else if ( usart_idx = = 3 ) { // Sideboard USART3
# ifdef CONTROL_SERIAL_USART3
timeoutCntSerial_R = 0 ; // Reset timeout counter
timeoutFlagSerial_R = 0 ; // Clear timeout flag
# endif
}
}
}
# endif
}
# endif
/*
* Process Sideboard Rx data
* - if the Sideboard_in data is valid ( correct START_FRAME and checksum ) copy the Sideboard_in to Sideboard_out
*/
# if defined(SIDEBOARD_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART3)
void usart_process_sideboard ( SerialSideboard * Sideboard_in , SerialSideboard * Sideboard_out , uint8_t usart_idx )
{
uint16_t checksum ;
if ( Sideboard_in - > start = = SERIAL_START_FRAME ) {
checksum = ( uint16_t ) ( Sideboard_in - > start ^ Sideboard_in - > roll ^ Sideboard_in - > pitch ^ Sideboard_in - > yaw ^ Sideboard_in - > sensors ) ;
if ( Sideboard_in - > checksum = = checksum ) {
* Sideboard_out = * Sideboard_in ;
if ( usart_idx = = 2 ) { // Sideboard USART2
# ifdef SIDEBOARD_SERIAL_USART2
timeoutCntSerial_L = 0 ; // Reset timeout counter
timeoutFlagSerial_L = 0 ; // Clear timeout flag
# endif
} else if ( usart_idx = = 3 ) { // Sideboard USART3
# ifdef SIDEBOARD_SERIAL_USART3
timeoutCntSerial_R = 0 ; // Reset timeout counter
timeoutFlagSerial_R = 0 ; // Clear timeout flag
# endif
}
}
}
}
# endif
2020-03-01 09:00:26 +00:00
/* =========================== Sideboard Functions =========================== */
/*
* Sideboard LEDs Handling
* This function manages the leds behavior connected to the sideboard
*/
void sideboardLeds ( uint8_t * leds ) {
# if defined(SIDEBOARD_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART3)
// Enable flag: use LED4 (bottom Blue)
// enable == 1, turn on led
// enable == 0, blink led
if ( enable ) {
* leds | = LED4_SET ;
} else if ( ! enable & & ( main_loop_counter % 20 = = 0 ) ) {
* leds ^ = LED4_SET ;
}
// Backward Drive: use LED5 (upper Blue)
// backwardDrive == 1, blink led
// backwardDrive == 0, turn off led
if ( backwardDrive & & ( main_loop_counter % 50 = = 0 ) ) {
* leds ^ = LED5_SET ;
}
// Brake: use LED5 (upper Blue)
// brakePressed == 1, turn on led
// brakePressed == 0, turn off led
# ifdef VARIANT_HOVERCAR
if ( brakePressed ) {
* leds | = LED5_SET ;
} else if ( ! brakePressed & & ! backwardDrive ) {
* leds & = ~ LED5_SET ;
}
# endif
// Battery Level Indicator: use LED1, LED2, LED3
if ( main_loop_counter % BAT_BLINK_INTERVAL = = 0 ) { // | RED (LED1) | YELLOW (LED3) | GREEN (LED2) |
if ( batVoltage < BAT_DEAD ) { // | 0 | 0 | 0 |
* leds & = ~ LED1_SET & ~ LED3_SET & ~ LED2_SET ;
} else if ( batVoltage < BAT_LVL1 ) { // | B | 0 | 0 |
* leds ^ = LED1_SET ;
* leds & = ~ LED3_SET & ~ LED2_SET ;
} else if ( batVoltage < BAT_LVL2 ) { // | 1 | 0 | 0 |
* leds | = LED1_SET ;
* leds & = ~ LED3_SET & ~ LED2_SET ;
} else if ( batVoltage < BAT_LVL3 ) { // | 0 | B | 0 |
* leds ^ = LED3_SET ;
* leds & = ~ LED1_SET & ~ LED2_SET ;
} else if ( batVoltage < BAT_LVL4 ) { // | 0 | 1 | 0 |
* leds | = LED3_SET ;
* leds & = ~ LED1_SET & ~ LED2_SET ;
} else if ( batVoltage < BAT_LVL5 ) { // | 0 | 0 | B |
* leds ^ = LED2_SET ;
* leds & = ~ LED1_SET & ~ LED3_SET ;
} else { // | 0 | 0 | 1 |
* leds | = LED2_SET ;
* leds & = ~ LED1_SET & ~ LED3_SET ;
}
}
// Error handling
// Critical error: LED1 on (RED) + high pitch beep (hadled in main)
// Soft error: LED3 on (YELLOW) + low pitch beep (hadled in main)
if ( rtY_Left . z_errCode | | rtY_Right . z_errCode ) {
* leds | = LED1_SET ;
* leds & = ~ LED3_SET & ~ LED2_SET ;
}
if ( timeoutFlagADC | | timeoutFlagSerial ) {
* leds | = LED3_SET ;
* leds & = ~ LED1_SET & ~ LED2_SET ;
}
# endif
}
/*
* Sideboard Sensor Handling
* This function manages the sideboards photo sensors .
* In non - hoverboard variants , the sensors are used as push buttons .
*/
void sideboardSensors ( uint8_t sensors ) {
# if !defined(VARIANT_HOVERBOARD) && (defined(SIDEBOARD_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART3))
2020-10-20 17:54:38 +00:00
static uint8_t sensor1_prev , sensor2_prev ;
2020-03-01 09:00:26 +00:00
uint8_t sensor1_rising_edge , sensor2_rising_edge ;
sensor1_rising_edge = ( sensors & SENSOR1_SET ) & & ! sensor1_prev ;
sensor2_rising_edge = ( sensors & SENSOR2_SET ) & & ! sensor2_prev ;
sensor1_prev = sensors & SENSOR1_SET ;
sensor2_prev = sensors & SENSOR2_SET ;
// Control MODE and Control Type Handling: use Sensor1 as push button
2020-10-20 17:54:38 +00:00
static uint8_t sensor1_index ; // holds the press index number for sensor1, when used as a button
2020-03-01 09:00:26 +00:00
if ( sensor1_rising_edge ) {
sensor1_index + + ;
if ( sensor1_index > 4 ) { sensor1_index = 0 ; }
switch ( sensor1_index ) {
case 0 : // FOC VOLTAGE
2020-07-19 09:24:37 +00:00
rtP_Left . z_ctrlTypSel = FOC_CTRL ;
rtP_Right . z_ctrlTypSel = FOC_CTRL ;
ctrlModReqRaw = VLT_MODE ;
2020-03-01 09:00:26 +00:00
break ;
case 1 : // FOC SPEED
2020-07-19 09:24:37 +00:00
ctrlModReqRaw = SPD_MODE ;
2020-03-01 09:00:26 +00:00
break ;
case 2 : // FOC TORQUE
2020-07-19 09:24:37 +00:00
ctrlModReqRaw = TRQ_MODE ;
2020-03-01 09:00:26 +00:00
break ;
case 3 : // SINUSOIDAL
2020-07-19 09:24:37 +00:00
rtP_Left . z_ctrlTypSel = SIN_CTRL ;
rtP_Right . z_ctrlTypSel = SIN_CTRL ;
2020-03-01 09:00:26 +00:00
break ;
case 4 : // COMMUTATION
2020-07-19 09:24:37 +00:00
rtP_Left . z_ctrlTypSel = COM_CTRL ;
rtP_Right . z_ctrlTypSel = COM_CTRL ;
2020-03-01 09:00:26 +00:00
break ;
}
2020-10-13 08:38:43 +00:00
shortBeepMany ( sensor1_index + 1 , 1 ) ;
2020-03-01 09:00:26 +00:00
}
// Field Weakening: use Sensor2 as push button
2020-10-20 17:54:38 +00:00
# ifdef CRUISE_CONTROL_SUPPORT
if ( sensor2_rising_edge ) {
cruiseControl ( sensor2_rising_edge ) ;
2020-03-01 09:00:26 +00:00
}
2020-10-20 17:54:38 +00:00
# else
static uint8_t sensor2_index ; // holds the press index number for sensor2, when used as a button
if ( sensor2_rising_edge ) {
sensor2_index + + ;
if ( sensor2_index > 1 ) { sensor2_index = 0 ; }
switch ( sensor2_index ) {
case 0 : // FW Disabled
rtP_Left . b_fieldWeakEna = 0 ;
rtP_Right . b_fieldWeakEna = 0 ;
Input_Lim_Init ( ) ;
break ;
case 1 : // FW Enabled
rtP_Left . b_fieldWeakEna = 1 ;
rtP_Right . b_fieldWeakEna = 1 ;
Input_Lim_Init ( ) ;
break ;
}
shortBeepMany ( sensor2_index + 1 , 1 ) ;
}
# endif // CRUISE_CONTROL_SUPPORT
2020-03-01 09:00:26 +00:00
# endif
}
/* =========================== Filtering Functions =========================== */
2020-06-22 18:21:18 +00:00
/* Low pass filter fixed-point 32 bits: fixdt(1,32,16)
* Max : 32767.99998474121
* Min : - 32768
* Res : 1.52587890625e-05
2020-03-01 09:00:26 +00:00
*
* Inputs : u = int16 or int32
* Outputs : y = fixdt ( 1 , 32 , 16 )
* Parameters : coef = fixdt ( 0 , 16 , 16 ) = [ 0 , 65535U ]
*
* Example :
* If coef = 0.8 ( in floating point ) , then coef = 0.8 * 2 ^ 16 = 52429 ( in fixed - point )
* filtLowPass16 ( u , 52429 , & y ) ;
* yint = ( int16_t ) ( y > > 16 ) ; // the integer output is the fixed-point ouput shifted by 16 bits
*/
2020-07-20 17:36:24 +00:00
void filtLowPass32 ( int32_t u , uint16_t coef , int32_t * y ) {
2020-03-01 09:00:26 +00:00
int64_t tmp ;
tmp = ( ( int64_t ) ( ( u < < 4 ) - ( * y > > 12 ) ) * coef ) > > 4 ;
tmp = CLAMP ( tmp , - 2147483648LL , 2147483647LL ) ; // Overflow protection: 2147483647LL = 2^31 - 1
* y = ( int32_t ) tmp + ( * y ) ;
}
// Old filter
// Inputs: u = int16
// Outputs: y = fixdt(1,32,20)
// Parameters: coef = fixdt(0,16,16) = [0,65535U]
// yint = (int16_t)(y >> 20); // the integer output is the fixed-point ouput shifted by 20 bits
// void filtLowPass32(int16_t u, uint16_t coef, int32_t *y) {
// int32_t tmp;
// tmp = (int16_t)(u << 4) - (*y >> 16);
// tmp = CLAMP(tmp, -32768, 32767); // Overflow protection
// *y = coef * tmp + (*y);
// }
/* rateLimiter16(int16_t u, int16_t rate, int16_t *y);
* Inputs : u = int16
* Outputs : y = fixdt ( 1 , 16 , 4 )
* Parameters : rate = fixdt ( 1 , 16 , 4 ) = [ 0 , 32767 ] Do NOT make rate negative ( > 32767 )
*/
void rateLimiter16 ( int16_t u , int16_t rate , int16_t * y ) {
int16_t q0 ;
int16_t q1 ;
q0 = ( u < < 4 ) - * y ;
if ( q0 > rate ) {
q0 = rate ;
} else {
q1 = - rate ;
if ( q0 < q1 ) {
q0 = q1 ;
}
}
* y = q0 + * y ;
}
/* mixerFcn(rtu_speed, rtu_steer, &rty_speedR, &rty_speedL);
* Inputs : rtu_speed , rtu_steer = fixdt ( 1 , 16 , 4 )
* Outputs : rty_speedR , rty_speedL = int16_t
* Parameters : SPEED_COEFFICIENT , STEER_COEFFICIENT = fixdt ( 0 , 16 , 14 )
*/
void mixerFcn ( int16_t rtu_speed , int16_t rtu_steer , int16_t * rty_speedR , int16_t * rty_speedL ) {
int16_t prodSpeed ;
int16_t prodSteer ;
int32_t tmp ;
prodSpeed = ( int16_t ) ( ( rtu_speed * ( int16_t ) SPEED_COEFFICIENT ) > > 14 ) ;
prodSteer = ( int16_t ) ( ( rtu_steer * ( int16_t ) STEER_COEFFICIENT ) > > 14 ) ;
tmp = prodSpeed - prodSteer ;
tmp = CLAMP ( tmp , - 32768 , 32767 ) ; // Overflow protection
* rty_speedR = ( int16_t ) ( tmp > > 4 ) ; // Convert from fixed-point to int
* rty_speedR = CLAMP ( * rty_speedR , INPUT_MIN , INPUT_MAX ) ;
tmp = prodSpeed + prodSteer ;
tmp = CLAMP ( tmp , - 32768 , 32767 ) ; // Overflow protection
* rty_speedL = ( int16_t ) ( tmp > > 4 ) ; // Convert from fixed-point to int
* rty_speedL = CLAMP ( * rty_speedL , INPUT_MIN , INPUT_MAX ) ;
}
/* =========================== Multiple Tap Function =========================== */
/* multipleTapDet(int16_t u, uint32_t timeNow, MultipleTap *x)
* This function detects multiple tap presses , such as double tapping , triple tapping , etc .
* Inputs : u = int16_t ( input signal ) ; timeNow = uint32_t ( current time )
* Outputs : x - > b_multipleTap ( get the output here )
*/
void multipleTapDet ( int16_t u , uint32_t timeNow , MultipleTap * x ) {
uint8_t b_timeout ;
uint8_t b_hyst ;
uint8_t b_pulse ;
uint8_t z_pulseCnt ;
uint8_t z_pulseCntRst ;
uint32_t t_time ;
// Detect hysteresis
if ( x - > b_hysteresis ) {
b_hyst = ( u > MULTIPLE_TAP_LO ) ;
} else {
b_hyst = ( u > MULTIPLE_TAP_HI ) ;
}
// Detect pulse
b_pulse = ( b_hyst ! = x - > b_hysteresis ) ;
// Save time when first pulse is detected
if ( b_hyst & & b_pulse & & ( x - > z_pulseCntPrev = = 0 ) ) {
t_time = timeNow ;
} else {
t_time = x - > t_timePrev ;
}
// Create timeout boolean
b_timeout = ( timeNow - t_time > MULTIPLE_TAP_TIMEOUT ) ;
// Create pulse counter
if ( ( ! b_hyst ) & & ( x - > z_pulseCntPrev = = 0 ) ) {
z_pulseCnt = 0U ;
} else {
z_pulseCnt = b_pulse ;
}
// Reset counter if we detected complete tap presses OR there is a timeout
if ( ( x - > z_pulseCntPrev > = MULTIPLE_TAP_NR ) | | b_timeout ) {
z_pulseCntRst = 0U ;
} else {
z_pulseCntRst = x - > z_pulseCntPrev ;
}
z_pulseCnt = z_pulseCnt + z_pulseCntRst ;
// Check if complete tap presses are detected AND no timeout
if ( ( z_pulseCnt > = MULTIPLE_TAP_NR ) & & ( ! b_timeout ) ) {
x - > b_multipleTap = ! x - > b_multipleTap ; // Toggle output
}
// Update states
x - > z_pulseCntPrev = z_pulseCnt ;
x - > b_hysteresis = b_hyst ;
x - > t_timePrev = t_time ;
}