Multiscale/scalecontroller.ino

1062 lines
27 KiB
C++

//use arduino 1.0.5, otherwise display library does not work properly
#include <Servo.h>
#include "HX711.h"
#include <EEPROM.h>
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#define EEPROMVERSION 1
Servo esc;
#define PIN_BACK 8
#define PIN_DOWN 10
#define PIN_UP 11
#define PIN_SET 12
#define PIN_CURRENT A3
#define PIN_VOLTAGE A2
#define PIN_ESC 9 //D9 = PB1, pin 15
#define PIN_RPM 1 //Interrupt 0 = D2 = PD2, pin 4,Interrupt 1 = D3 = PD3, pin 5
uint16_t rotationcounter=0; //counts up on rotation interrupt
uint16_t rpm=0;
#define ESC_MIN 1000
#define ESC_MAX 2000 //2000
uint16_t esc_value=ESC_MIN; //esc_value
uint8_t maxcurrent=10;
uint8_t minvoltage=105; // *0.1
uint32_t btn_back_tdown=0;
uint32_t btn_down_tdown=0;
uint32_t btn_up_tdown=0;
uint32_t btn_set_tdown=0;
uint32_t btn_back_trelease=0;
uint32_t btn_down_trelease=0;
uint32_t btn_up_trelease=0;
uint32_t btn_set_trelease=0;
uint8_t btn_back_press=0; //0=not press, 1=down, 2=short press (on release), 3=long press(on release)
uint8_t btn_down_press=0;
uint8_t btn_up_press=0;
uint8_t btn_set_press=0;
#define BTN_BOUNCETIME 50
#define BTN_HOLDTIME 1000
//tutorial: set Multiplier to 1, apply known voltage/current, divide applied voltage/current by LCD Reading = multiplier
#define VOLTAGEMULTIPLIER 0.02009 //0.0011792 //5*0.2415/1024
#define CURRENTMULTIPLIER 0.02083 //
#define PIN_LED 13
#define MAXDOUBLEVALUE 32767
//DEFAULT EEPROM SETTINGS
#define DEFAULT_FPS 5
#define DEFAULT_SCALECALIBRATION 5875 // (72500/12.34) <- rough estimation
#define DEFAULT_ADCMEDIANVALUES 15
#define DEFAULT_SPSADC 10
// DOUT, SCK
HX711 scale(A1, A0); // parameter "gain" is ommited; the default value 128 is used by the library
//A+= green, A-=white, E-=Black, E+=Red
LiquidCrystal_I2C lcd(0x27,16,2); // set the LCD address to 0x27 for a 16 chars and 2 line display
//lcd sda an pin 27 (A4)
//lcd sck an pin 28 (A5)
double scalecalibration=DEFAULT_SCALECALIBRATION; //default //eeprom
String SerialMessage = "";
String receivedString ="";
char tempstring[16]; //for dtostrf
long time_lastlcd=0;
long looptimelcd_margin=0; //if >0 loop took longer than expected
uint8_t fps=DEFAULT_FPS; //EEPROM
long time_lcdwait=1000/fps;
String lcd0=""; //lcd line 0
String lcd1=""; // " 1
#define LCD_BACKLIGHT_TIME 20000
uint32_t lcd_backlight_offtimer=0;
#define LCD_BACKLIGHT_WEIGHT 2 //if weightchange lower than x, turn backlight off after LCD_BACKLIGHT_TIME ms
String lcd0_buffer="";
String lcd1_buffer="";
long time_lastadc=0;
long looptimeadc_margin=0;
uint8_t spsadc=DEFAULT_SPSADC; //eeprom
long time_adcwait=1000/spsadc;
int adc_readings=1; //ca. 700ms for 5 readings, ca 75ms for 1 reading, readings=1 10times = 747ms
double weight=0;
#define ADCMEDIANVALUES_MAX 31 //needs to be uneven, maximum number, for array declaration
double weightseries[ADCMEDIANVALUES_MAX]; //last n values for median filter
int adcmedianvalues=DEFAULT_ADCMEDIANVALUES; //needs to be uneven //eeprom
int adcmedianposition=0;
float calibrationWeight=100; //gramms
#define N_CURRENTREADINGS 8
uint16_t currentreadings[N_CURRENTREADINGS];
uint8_t currentreading_pos=0;
//STATES
#define S_SCALEDISPLAY 0
#define S_MENU 1
uint8_t state_menu=0;
#define SM_scale 0
#define SM_thrusttest 1
#define SM_calibration 2
#define SM_fps 3
#define SM_medianfilter 4
#define SM_spsadc 5
#define SM_maxcurrent 6
#define SM_minvoltage 7
#define SM_thrusttest_steptime 8
#define SM_save 9
#define SM_loaddefaults 10
String menu_entry[]={"Scale","Thrusttest","Calibration","FPS","Medianfilter","ADC Speed","Max A","Min V","Ramptime","Save","Load Defaults"};
#define MENU_ENTRIES 10
#define S_MENUENTRY 2
#define S_CALIBRATION 3
uint8_t state_calibration=0; //0=wait (for press), 1=measure, 2=show
#define DELAY_CALIBRATIONWAIT 1000 //delay after key press for measuring
#define DELAY_CALIBRATIONSHOW 5000
#define S_THRUSTDISPLAY 10
uint8_t state_thrusttest=0;
unsigned long thrusttest_timer=0;
#define THRUSTTEST_STARTDELAY 5000
uint8_t thrusttest_steptime=3; //time in ms for one step esc value. 1ms=>1sec from 0%-100%. --> time in seconds for 0-100% //EEPROM
unsigned long thrusttest_holdmax=1000; //hold maximum value for x ms
unsigned long thrusttest_waitend=5000;
float test_maxamps=0;
float test_maxthrust=0;
unsigned long testtime=0;
uint8_t state=S_SCALEDISPLAY;
uint32_t statetimer=0; //for state delays
void setup() {
Serial.begin(9600);
pinMode(PIN_LED, OUTPUT);
digitalWrite(PIN_LED, HIGH);
esc.attach(PIN_ESC,1000,2000);
esc_value=ESC_MIN;
esc.writeMicroseconds(esc_value);
pinMode(PIN_UP, INPUT);
digitalWrite(PIN_UP, HIGH);
pinMode(PIN_DOWN, INPUT);
digitalWrite(PIN_DOWN, HIGH);
pinMode(PIN_SET, INPUT);
digitalWrite(PIN_SET, HIGH);
pinMode(PIN_BACK, INPUT);
digitalWrite(PIN_BACK, HIGH);
attachInterrupt(PIN_RPM, rpm_interrupt, RISING);
lcd.init();
lcd.backlight();
lcd.noAutoscroll();
//Serial.println("Multiscale");
lcd.clear();
lcd.print("Multiscale");
if(!digitalRead(PIN_BACK)) //if back pressed, load defaults
loadDefaults();
else
loadEEPROMsettings();
//Serial.print("calib="); Serial.println(scalecalibration,10);
lcd.setCursor(0,1);
dtostrf(scalecalibration,4,5,tempstring);
lcd.print("cal="+String(tempstring));
scale.set_scale(scalecalibration);
scale.tare();
/*delay(500);
lcd.clear();
long t_teststart=millis();
for (int i=0;i<10;i++)
scale.get_units(1);
long t_testend=millis();
dtostrf((t_testend-t_teststart),10,0,tempstring);
lcd.print("t="+String(tempstring));
delay(2000);*/
digitalWrite(PIN_LED, LOW);
lcd.clear();
}
void loop() {
buttonCheck();
//checkSerial();
/*
if (receivedString.length()>0){
if (receivedString.equals("tare")){
double weightTareBefore=scale.get_units(5);
scale.tare();
double weightTareAfter=scale.get_units(5);
Serial.print("Tared. Difference=");
Serial.println((weightTareAfter-weightTareBefore),4);
}
else if (receivedString.substring(0,11).equals("calibration")){
calibrationWeight=StringToFloat(receivedString.substring(12)+"0");
Serial.print("Calibration, set weight="); Serial.println(calibrationWeight,10);
scale.set_scale();
scale.tare();
Serial.println("Reset Scale, place known weight now! ...");
delay(5000);
Serial.println("Do not touch scale!");
double calibrationWeight_scale=scale.get_units(10);
Serial.println(calibrationWeight_scale, 100);
scalecalibration=calibrationWeight_scale/calibrationWeight;
Serial.print("Done. Scalescalibration="); Serial.println(scalecalibration,10);
scale.set_scale(scalecalibration);
writeEEPROMsettings();
Serial.println("Saved to EEPROM");
}else if(receivedString.equals("g")){
Serial.println(scale.get_units(5), 10);
}else{
Serial.print("unknown command: "); Serial.println(receivedString);
}
}*/
currentreadings[currentreading_pos]=analogRead(PIN_CURRENT);
currentreading_pos++;
currentreading_pos%=N_CURRENTREADINGS;
switch(state){
case S_SCALEDISPLAY:
if ((getWeightSeriesMax()-getWeightSeriesMin())<LCD_BACKLIGHT_WEIGHT){
if (lcd_backlight_offtimer==0)
lcd_backlight_offtimer=millis();
if ((lcd_backlight_offtimer+LCD_BACKLIGHT_TIME)<millis())
lcd.noBacklight();
}else{
lcd_backlight_offtimer=0;
lcd.backlight();
}
lcd0=toStringBar(weight,0,1000);
//lcd1=toWeightString(weight)+"g";
lcd1=toWeightString(getWeightMedian())+"g";
//___
if (btn_back_press==2){ //press BACK to tare
scale.tare();
}
if (btn_set_press==2){
state=S_MENU;
state_menu=0;
}
break;
case S_MENU:
lcd.backlight();
lcd0=menu_entry[state_menu];
lcd1="---";
//___
if (btn_back_press==2){
state=S_SCALEDISPLAY;
}
if (btn_down_press==2){
if (state_menu>0)
state_menu--;
}
if (btn_up_press==2){
if (state_menu<(MENU_ENTRIES-1))
state_menu++;
}
if (btn_set_press==2){ //Menu entry selected
state=S_MENUENTRY;
}
break;
case S_MENUENTRY: //menu entry selected
lcd0=" #"+menu_entry[state_menu]+"#";
lcd1=menuentry_string();
//___
if (btn_back_press==2){
menuentry_back(btn_down_press);
state=S_MENU;
}
if (btn_down_press>=2){
menuentry_down(btn_down_press);
}
if (btn_up_press>=2){
menuentry_up(btn_up_press);
}
if (btn_set_press>=2){
menuentry_set(btn_set_press);
}
break;
case S_CALIBRATION: //menu entry selected
if (btn_back_press==2){
state=S_MENUENTRY; //abort
}
if (state_calibration==0){ //wait for press
lcd0="Remove weight";
lcd1="then press SET";
if (btn_set_press>=2){
state_calibration=1;
statetimer=millis();
}
}else if (state_calibration==1){ //taring
if (millis()<(statetimer+DELAY_CALIBRATIONWAIT)){ //wait some time
lcd0="Wait";
lcd1="";
}else{
lcd0="Taring";
lcd1="";
scale.set_scale();
scale.tare();
state_calibration=2;
}
}else if (state_calibration==2){ // wait for press
lcd0="Place "+toString(calibrationWeight,0)+"g";
lcd1="press SET";
if (btn_set_press>=2){
state_calibration=3;
statetimer=millis();
}
}else if (state_calibration==3){ // measuring
if (millis()<(statetimer+DELAY_CALIBRATIONWAIT)){ //wait some time
lcd0="Please wait ...";
lcd1="";
}else if (millis()<(statetimer+DELAY_CALIBRATIONWAIT+500)){ //print new text
lcd0="";
lcd1="Measuring ...";
}else{
double calibrationWeight_scale=scale.get_units(30);
scalecalibration=calibrationWeight_scale/calibrationWeight;
scale.set_scale(scalecalibration);
writeEEPROMsettings();
state_calibration=4;
statetimer=millis();
}
}else if (state_calibration==4){ //show data
if (millis()<(statetimer+DELAY_CALIBRATIONSHOW)){ //wait some time
lcd0=""+toString(scalecalibration);
lcd1="Saved to eeprom";
}else{
lcd0="";
lcd1="";
state_calibration=0;
state=S_SCALEDISPLAY;
}
}
break;
case S_THRUSTDISPLAY:
{
if (state_thrusttest>0){ //only check if test started
if (getCurrent()>maxcurrent ){
esc_value=ESC_MIN;
esc.writeMicroseconds(esc_value); //esc off
state_thrusttest=10; //10=amp max error
}
if (getVoltage()*10<minvoltage){
esc_value=ESC_MIN;
esc.writeMicroseconds(esc_value); //esc off
state_thrusttest=11; //11=undervoltage
}
}
if (btn_down_press==1 || btn_back_press==1){
esc_value=ESC_MIN;
esc.writeMicroseconds(esc_value); //esc off
state_thrusttest=0;
}
if (btn_set_press==2){ //goto menu
state_thrusttest=0;
esc_value=ESC_MIN;
esc.writeMicroseconds(esc_value); //esc off
state=S_MENU;
state_menu=0;
}
//look for new max values
if (test_maxamps<getCurrent()){
test_maxamps=getCurrent();
}
if (test_maxthrust<weight){
test_maxthrust=weight;
}
if (state_thrusttest==0 || (state_thrusttest>=2 && state_thrusttest<=4)){
lcd0=toWeightString(getCurrent(),1,2)+"A "+toWeightString(getVoltage(),2,1)+"V";
lcd1=toWeightString(weight,0,2)+"g " + String(esc_value)+" "+String(rpm);
}
if (state_thrusttest==0){ //wait to start
//lcd0=toWeightString(getCurrent(),2,1)+"A "+toWeightString(getVoltage(),2,1)+"V";
//lcd1=toWeightString(weight,2,1)+"g v=" + toWeightString(esc_value,2,0);
if (btn_up_press==3){ //long press
scale.tare();
state_thrusttest=1; //start
thrusttest_timer=millis();
}
}else if (state_thrusttest==1){ //initialize thrusttest
lcd0="Starting Test ...";
lcd1="Max "+toWeightString(maxcurrent,2,1)+"A";
esc_value=ESC_MIN;
esc.writeMicroseconds(esc_value);
if (millis()-thrusttest_timer>THRUSTTEST_STARTDELAY){ //start ramping
Serial.println("Time;Value;Current;Voltage;Thrust;RPM"); //Print CSV Head
test_maxamps=0; //reset statistics
test_maxthrust=0;
state_thrusttest=2;
thrusttest_timer=millis(); //use timer for ramping
testtime=millis();
}
}else if (state_thrusttest==2){ //ramping up
if (millis()-thrusttest_timer>thrusttest_steptime){
esc_value++;
if (esc_value>ESC_MAX){
esc_value=ESC_MAX;
state_thrusttest=3; //next state
}
esc.writeMicroseconds(esc_value);
thrusttest_timer=millis();
}
//lcd0=toWeightString(getCurrent(),2,1)+"A "+toWeightString(getVoltage(),2,1)+"V";
//lcd1=toWeightString(weight,2,1)+"g v=" + toWeightString(esc_value,2,0);
}else if (state_thrusttest==3){ //hold
if (millis()-thrusttest_timer>thrusttest_holdmax){
state_thrusttest=4;
thrusttest_timer=millis();
}
//lcd0=toWeightString(getCurrent(),2,1)+"A "+toWeightString(getVoltage(),2,1)+"V";
//lcd1=toWeightString(weight,2,1)+"g v=" + toWeightString(esc_value,2,0);
}else if (state_thrusttest==4){ //ramp down
if (millis()-thrusttest_timer>thrusttest_steptime){
esc_value--;
if (esc_value<ESC_MIN){
esc_value=ESC_MIN;
state_thrusttest=5; //next state
}
esc.writeMicroseconds(esc_value);
thrusttest_timer=millis();
}
//lcd0=toWeightString(getCurrent(),2,1)+"A "+toWeightString(getVoltage(),2,1)+"V";
//lcd1=toWeightString(weight,2,1)+"g v=" + toWeightString(esc_value,2,0);
}else if (state_thrusttest==5){ //end, wait
if (millis()-thrusttest_timer>thrusttest_waitend){
state_thrusttest=0;
esc_value=ESC_MIN;
esc.writeMicroseconds(esc_value); //make shure esc is off
thrusttest_timer=millis();
}
lcd0="Max "+toWeightString(test_maxamps,2,1)+"A";
lcd1=toWeightString(test_maxthrust,2,1)+"g";
}else if(state_thrusttest==10){ //amp max error
lcd0="Max Amp";
}else if(state_thrusttest==11){ //min voltage error
lcd0="Undervolt.";
}
break;
}
}
//reset button flags
resetBTNFlag(&btn_back_press);
resetBTNFlag(&btn_down_press);
resetBTNFlag(&btn_up_press);
resetBTNFlag(&btn_set_press);
//read scale
if (millis() >= time_lastadc+time_adcwait)
{
weight=scale.get_units(adc_readings);
adcmedianposition++; if (adcmedianposition>=adcmedianvalues) adcmedianposition=0;
weightseries[adcmedianposition]=weight; //save weight to series for medianfilter
looptimeadc_margin=millis()-time_lastadc-time_adcwait;
uint16_t time_passed=millis()-time_lastadc;
uint16_t _rotmultiplier=60000/time_passed;
rpm=rotationcounter*_rotmultiplier; //rotationcounter*60000/(millis()-time_lastadc)
rotationcounter=0;
time_lastadc=millis();
if (state==S_THRUSTDISPLAY && state_thrusttest>=2 && state_thrusttest<=5){ //in thrusttest
Serial.print(String(millis()-testtime)+";");
Serial.print(String(esc_value)+";");
Serial.print(toWeightString(getCurrent(),2,1)+";");
Serial.print(toWeightString(getVoltage(),2,1)+";");
Serial.print(toWeightString(weight,2,1)+";");
Serial.println(String(rpm));
}
}
//DISPLAY
if (millis() >= time_lastlcd+time_lcdwait)
{
updateLCD();
looptimelcd_margin=millis()-time_lastlcd-time_lcdwait;
time_lastlcd=millis();
}
//Status led lights up if atmega cannot keep up
if (looptimelcd_margin>time_lcdwait || looptimeadc_margin>time_adcwait){
digitalWrite(PIN_LED,HIGH);
}else{
digitalWrite(PIN_LED,LOW);
}
}
void updateLCD(){
/*switch(state){
case S_SCALEDISPLAY:
if ((getWeightSeriesMax()-getWeightSeriesMin())<LCD_BACKLIGHT_WEIGHT){
if (lcd_backlight_offtimer==0)
lcd_backlight_offtimer=millis();
if ((lcd_backlight_offtimer+LCD_BACKLIGHT_TIME)<millis())
lcd.noBacklight();
}else{
lcd_backlight_offtimer=0;
lcd.backlight();
}
lcd0=toStringBar(weight,0,500);
lcd1=toWeightString(weight)+"g";
break;
case S_MENU: //entry show
lcd.backlight();
lcd0=menu_entry[state_menu];
lcd1="---";
break;
case S_MENUENTRY: //Entry selected/entered
lcd0=" #"+menu_entry[state_menu]+"#";
lcd1=menuentry_string();
break;
case S_CALIBRATION:
if (state_calibration==0){ //wait for press
lcd0="Place weight and";
lcd1="press SET";
}else if (state_calibration==1){ //measuring
lcd0="Please wait ...";
lcd1="";
}else if (state_calibration==2){
lcd0="";
lcd1="press SET";
}
break;
}
*/
if (!lcd0.equals(lcd0_buffer) || !lcd1.equals(lcd1_buffer)){
lcd.clear();
lcd.print(lcd0);
lcd.setCursor(0,1);
lcd.print(lcd1);
lcd0_buffer=lcd0;
lcd1_buffer=lcd1;
}
}
void buttonCheck()
{
buttonHandler(PIN_BACK,&btn_back_tdown,&btn_back_trelease,&btn_back_press);
buttonHandler(PIN_DOWN,&btn_down_tdown,&btn_down_trelease,&btn_down_press);
buttonHandler(PIN_UP,&btn_up_tdown,&btn_up_trelease,&btn_up_press);
buttonHandler(PIN_SET,&btn_set_tdown,&btn_set_trelease,&btn_set_press);
}
void buttonHandler(uint8_t pin,uint32_t *btntdown,uint32_t *btntrelease,uint8_t *btnpress)
{
if (!digitalRead(pin)){
if (*btntdown==0 && (*btntrelease+BTN_BOUNCETIME)<millis()){
*btntdown=millis();
*btnpress=1; //is down
}
}else{
if (*btntdown!=0){
if (*btnpress==1){ //if down press not already handled, ie set to 0
if ((*btntdown+BTN_HOLDTIME)>millis()){ //short
*btnpress=2;
}else{ //long
*btnpress=3;
}
}
if ((*btntdown+BTN_BOUNCETIME)<millis()){ //wait if debouncetime over
*btntdown=0;
*btntrelease=millis();
}
}
}
}
void resetBTNFlag(uint8_t *btnpress){
if (*btnpress==2 || *btnpress==3)
*btnpress=0; //reset if press or hold
}
void menuentry_down(uint8_t presstype){ //DOWN
switch(state_menu){
case SM_calibration: // Calibration
if (presstype==2){
if (calibrationWeight>0)
calibrationWeight--;
}else if(presstype==3){
if (calibrationWeight>50)
calibrationWeight-=50;
else
calibrationWeight=0;
}
break;
case SM_fps:
if (fps>1)
fps--;
break;
case SM_medianfilter:
if (adcmedianvalues>3)
adcmedianvalues-=2;
break;
case SM_spsadc:
if (spsadc>1)
spsadc--;
break;
case SM_maxcurrent:
if (maxcurrent>1)
maxcurrent--;
break;
case SM_minvoltage:
if (minvoltage>1)
minvoltage--;
break;
case SM_thrusttest_steptime:
if (thrusttest_steptime>1)
thrusttest_steptime--;
break;
}
}
void menuentry_up(uint8_t presstype){ //UP
switch(state_menu){
case SM_calibration: // Calibration
if (presstype==2)
calibrationWeight++;
if (presstype==3)
calibrationWeight+=50;
break;
case SM_fps:
if (fps<25)
fps++;
break;
case SM_medianfilter:
if (adcmedianvalues<(ADCMEDIANVALUES_MAX-1))
adcmedianvalues+=2;
break;
case SM_spsadc:
if (spsadc<100)
spsadc++;
break;
case SM_maxcurrent:
if (maxcurrent<50)
maxcurrent++;
break;
case SM_minvoltage:
if (minvoltage<255)
minvoltage++;
break;
case SM_thrusttest_steptime:
if (thrusttest_steptime<255)
thrusttest_steptime++;
break;
}
}
void menuentry_back(uint8_t presstype){ //BACK, only additional function
switch(state_menu){
case SM_fps: // FPS
updateFPS(); //calculate waittime from fps variable
break;
case SM_spsadc:
updateSPSADC(); //calculate waittime
state=S_MENU;
break;
}
}
void menuentry_set(uint8_t presstype){ //SET
switch(state_menu){
case SM_scale: //Scale
state=S_SCALEDISPLAY; //switch to scale display
break;
case SM_thrusttest: //Thrusttest
state=S_THRUSTDISPLAY;
lcd.backlight();
break;
case SM_calibration: // Calibration
state=S_CALIBRATION;
state_calibration=0;
break;
case SM_fps: // FPS
updateFPS(); //calculate waittime from fps variable
state=S_MENU;
break;
case SM_medianfilter: // medianfilter
state=S_MENU;
break;
case SM_spsadc:
updateSPSADC(); //calculate waittime
state=S_MENU;
break;
case SM_save: // Save EEPROM
writeEEPROMsettings();
state=S_MENU;
break;
case SM_loaddefaults: // Load defaults
loadDefaults();
state=S_MENU;
break;
}
}
String menuentry_string(){ //second line string if entry selected
String s="";
switch(state_menu){
case SM_scale: //Scale
case SM_thrusttest: case SM_save: case SM_loaddefaults:
s="Press SET";
break;
case SM_calibration: // Calibration
s=toString(calibrationWeight,0)+"g";
break;
case SM_fps:
s=toString(fps,0);
break;
case SM_medianfilter:
s=toString(adcmedianvalues,0);
break;
case SM_spsadc:
s=toString(spsadc,0)+"Hz";
break;
case SM_maxcurrent:
s=toString(maxcurrent,0)+"A";
break;
case SM_minvoltage:
s=toString(minvoltage/10.0,1)+"V";
break;
case SM_thrusttest_steptime:
s=toString(thrusttest_steptime,0)+"s";
break;
}
return s;
}
double getCurrent()
{
uint16_t _current=0;
for (uint8_t i=0;i<N_CURRENTREADINGS;i++){
_current+=currentreadings[i]/N_CURRENTREADINGS;
}
return _current*CURRENTMULTIPLIER+0.00001;
}
double getVoltage()
{
return analogRead(PIN_VOLTAGE)*VOLTAGEMULTIPLIER+0.00001;
}
double getWeightMedian() //return median weight from weightseries
{
boolean mask[adcmedianvalues]; //true=disabled value
for (int i=0;i<adcmedianvalues;i++)
mask[i]=false;
double cmin=MAXDOUBLEVALUE; int cmin_i=0;
double cmax=0; int cmax_i=0;
while(cmin!=cmax){ //stop when only one value left
cmin=MAXDOUBLEVALUE;
cmax=-MAXDOUBLEVALUE-1;
for (int i=0;i<adcmedianvalues;i++){
if (!mask[i]){
if (weightseries[i]<cmin){
cmin=weightseries[i];
cmin_i=i;
}
if (weightseries[i]>cmax){
cmax=weightseries[i];
cmax_i=i;
}
}
}
mask[cmin_i]=true;
mask[cmax_i]=true;
}
return cmax;
}
double getWeightSeriesMin()
{
double cmin=MAXDOUBLEVALUE;
for (int i=0;i<adcmedianvalues;i++){
if (weightseries[i]<cmin)
cmin=weightseries[i];
}
return cmin;
}
double getWeightSeriesMax()
{
double cmax=0;
for (int i=0;i<adcmedianvalues;i++){
if (weightseries[i]>cmax)
cmax=weightseries[i];
}
return cmax;
}
String toWeightString(double w){
return toWeightString(w,5,4);
}
String toWeightString(double w,uint8_t dec,uint8_t len){
char outstring[16];
char vz;
if(w<0)
vz='-';
else
vz='+';
dtostrf(abs(w),len,dec,outstring);
return String(vz)+""+String(outstring);
}
String toString(double w){
return toString(w,5);
}
String toString(double w,uint8_t dec){
char outstring[16];
dtostrf(w,1,dec,outstring);
return String(outstring);
}
String toStringBar(double val,double minimum,double maximum){
String s="";
if (val<minimum){
s="<";
}else if(val>maximum){
s=" >";
}else{
uint8_t pos=map(val,minimum,maximum,0,15);
for (uint8_t i=0;i<pos;i++){
s+=" ";
}
s+="|";
}
return s;
}
/*
void checkSerial(){
receivedString="";
while (Serial.available())
{
if (Serial.peek() == '\n' || Serial.peek() == '\r') // Ignore newlines.
{
Serial.read();
if (SerialMessage.length()>0)
receivedString=SerialMessage; //Save the string bevore clearing
SerialMessage="";
Serial.println();
}
else // For all other characters,
{
char c=Serial.read();
SerialMessage.concat(c); //concat all received characters
Serial.print(c);
}
}
}*/
void updateFPS(){
time_lcdwait=1000/fps;
}
void updateSPSADC(){
time_adcwait=1000/spsadc;
}
void loadEEPROMsettings() //load diversity settings
{
uint8_t addr=0;
uint8_t checkbyte=EEPROM.read(addr++); //checkbyte //0
if (checkbyte==EEPROMVERSION){ //if checkbyte correct
scalecalibration=EEPROMReadDouble(addr); addr+=4; //uint32_t
fps=EEPROM.read(addr++); //uint8_t
adcmedianvalues=EEPROM.read(addr++); //uint8_t
spsadc=EEPROM.read(addr++); //uint8_t
maxcurrent=EEPROM.read(addr++); //uint8_t
minvoltage=EEPROM.read(addr++); //uint8_t
thrusttest_steptime=EEPROM.read(addr++); //uint8_t
updateFPS();
updateSPSADC();
}else{
Serial.println("Wrong EEPROM Vers.");
}
}
void writeEEPROMsettings() //save diversity settings
{
uint8_t addr=0;
EEPROM.write(addr++,EEPROMVERSION);
EEPROMWriteDouble(addr, scalecalibration); addr+=4;
EEPROM.write(addr++, fps);
EEPROM.write(addr++, adcmedianvalues);
EEPROM.write(addr++, spsadc);
EEPROM.write(addr++, maxcurrent);
EEPROM.write(addr++, minvoltage);
EEPROM.write(addr++, thrusttest_steptime);
//EEPROM.write(addr++, scalecalibration);
//EEPROMWriteInt(addr+=2, switchdeadtime);
}
void loadDefaults(){
scalecalibration=DEFAULT_SCALECALIBRATION;
fps=DEFAULT_FPS;
updateFPS();
adcmedianvalues=DEFAULT_ADCMEDIANVALUES;
spsadc=DEFAULT_SPSADC;
updateSPSADC();
}
void EEPROMWriteInt(uint8_t paddr,uint16_t pdata){
EEPROM.write(paddr, (uint8_t)(pdata%256));
EEPROM.write(++paddr, (uint8_t)(pdata/256));
}
uint16_t EEPROMReadInt(uint8_t paddr){
uint16_t data=EEPROM.read(paddr);
data+=EEPROM.read(++paddr)*256;
return data;
}
void EEPROMWriteDouble(int ee, double value)
{
byte* p = (byte*)(void*)&value;
for (int i = 0; i < sizeof(value); i++)
EEPROM.write(ee++, *p++);
}
double EEPROMReadDouble(int ee)
{
double value = 0.0;
byte* p = (byte*)(void*)&value;
for (int i = 0; i < sizeof(value); i++)
*p++ = EEPROM.read(ee++);
return value;
}
float StringToFloat(String s){
char buf[s.length()];
s.toCharArray(buf,s.length());
return atof(buf);
}
void rpm_interrupt(){
rotationcounter++;
}