/* LEDstream_FastLED * * Modified version of Adalight protocol that uses the FastLED * library (http://fastled.io) for driving led strips. * * http://github.com/dmadison/Adalight-FastLED * Last Updated: 2017-03-19 */ // --- General Settings static const uint8_t Num_Leds = 80, // strip length Led_Pin = 6, // Arduino data output pin Brightness = 255; // maximum brightness // --- FastLED Setings #define LED_TYPE WS2812B // led strip type for FastLED #define COLOR_ORDER GRB // color order for bitbang // --- Serial Settings static const unsigned long SerialSpeed = 115200, // serial port speed, max available SerialTimeout = 150000; // time before LEDs are shut off, if no data // (150 seconds) // --- Optional Settings (uncomment to add) //#define CLEAR_ON_START // LEDs are cleared on reset //#define GROUND_PIN 10 // additional grounding pin (optional) //#define CALIBRATE // sets all LEDs to the color of the first // -------------------------------------------------------------------- #include CRGB leds[Num_Leds]; uint8_t * ledsRaw = (uint8_t *)leds; // A 'magic word' (along with LED count & checksum) precedes each block // of LED data; this assists the microcontroller in syncing up with the // host-side software and properly issuing the latch (host I/O is // likely buffered, making usleep() unreliable for latch). You may see // an initial glitchy frame or two until the two come into alignment. // The magic word can be whatever sequence you like, but each character // should be unique, and frequent pixel values like 0 and 255 are // avoided -- fewer false positives. The host software will need to // generate a compatible header: immediately following the magic word // are three bytes: a 16-bit count of the number of LEDs (high byte // first) followed by a simple checksum value (high byte XOR low byte // XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B, // where 0 = off and 255 = max brightness. static const uint8_t magic[] = { 'A','d','a'}; #define MAGICSIZE sizeof(magic) #define HEADERSIZE (MAGICSIZE + 3) #define MODE_HEADER 0 #define MODE_DATA 2 void setup(){ #ifdef GROUND_PIN pinMode(GROUND_PIN, OUTPUT); digitalWrite(GROUND_PIN, LOW); #endif FastLED.addLeds(leds, Num_Leds); FastLED.setBrightness(Brightness); #ifdef CLEAR_ON_START FastLED.show(); #endif Serial.begin(SerialSpeed); Serial.println(Num_Leds); Serial.println(Led_Pin); adalight(); } void adalight(){ // Dirty trick: the circular buffer for serial data is 256 bytes, // and the "in" and "out" indices are unsigned 8-bit types -- this // much simplifies the cases where in/out need to "wrap around" the // beginning/end of the buffer. Otherwise there'd be a ton of bit- // masking and/or conditional code every time one of these indices // needs to change, slowing things down tremendously. uint8_t buffer[256], indexIn = 0, indexOut = 0, mode = MODE_HEADER, hi, lo, chk, i; int16_t c; uint16_t bytesBuffered = 0; uint32_t bytesRemaining, outPos; unsigned long lastByteTime, lastAckTime, t; Serial.print("Ada\n"); // Send ACK string to host lastByteTime = lastAckTime = millis(); // loop() is avoided as even that small bit of function overhead // has a measurable impact on this code's overall throughput. for(;;) { // Implementation is a simple finite-state machine. // Regardless of mode, check for serial input each time: t = millis(); if((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) { buffer[indexIn++] = c; bytesBuffered++; lastByteTime = lastAckTime = t; // Reset timeout counters } else { // No data received. If this persists, send an ACK packet // to host once every second to alert it to our presence. if((t - lastAckTime) > 1000) { Serial.print("Ada\n"); // Send ACK string to host lastAckTime = t; // Reset counter } // If no data received for an extended time, turn off all LEDs. if((t - lastByteTime) > SerialTimeout) { memset(leds, 0, Num_Leds * sizeof(struct CRGB)); //filling Led array by zeroes FastLED.show(); lastByteTime = t; // Reset counter } } switch(mode) { case MODE_HEADER: // In header-seeking mode. Is there enough data to check? if(bytesBuffered >= HEADERSIZE) { // Indeed. Check for a 'magic word' match. for(i=0; (i 0) and multiply by 3 for R,G,B. bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L); bytesBuffered -= 3; outPos = 0; memset(leds, 0, Num_Leds * sizeof(struct CRGB)); mode = MODE_DATA; // Proceed to latch wait mode } else { // Checksum didn't match; search resumes after magic word. indexOut -= 3; // Rewind } } // else no header match. Resume at first mismatched byte. bytesBuffered -= i; } break; case MODE_DATA: if(bytesRemaining > 0) { if(bytesBuffered > 0) { if (outPos < sizeof(leds)){ #ifdef CALIBRATE if(outPos < 3) ledsRaw[outPos++] = buffer[indexOut++]; else{ ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color outPos++; indexOut++; } #else ledsRaw[outPos++] = buffer[indexOut++]; // Issue next byte #endif } bytesBuffered--; bytesRemaining--; } } else { // End of data -- issue latch: mode = MODE_HEADER; // Begin next header search FastLED.show(); } } // end switch } // end for(;;) } void loop() { // Not used. See note in adalight() function. }