commit
f3d194292d
|
@ -4,7 +4,7 @@
|
|||
* library (http://fastled.io) for driving led strips.
|
||||
*
|
||||
* http://github.com/dmadison/Adalight-FastLED
|
||||
* Last Updated: 2017-03-27
|
||||
* Last Updated: 2017-04-08
|
||||
*/
|
||||
|
||||
// --- General Settings
|
||||
|
@ -52,10 +52,14 @@ uint8_t * ledsRaw = (uint8_t *)leds;
|
|||
static const uint8_t magic[] = {
|
||||
'A','d','a'};
|
||||
#define MAGICSIZE sizeof(magic)
|
||||
#define HEADERSIZE (MAGICSIZE + 3)
|
||||
|
||||
// Check values are header byte # - 1, as they are indexed from 0
|
||||
#define HICHECK (MAGICSIZE)
|
||||
#define LOCHECK (MAGICSIZE + 1)
|
||||
#define CHECKSUM (MAGICSIZE + 2)
|
||||
|
||||
#define MODE_HEADER 0
|
||||
#define MODE_DATA 2
|
||||
#define MODE_DATA 1
|
||||
|
||||
void setup(){
|
||||
#ifdef GROUND_PIN
|
||||
|
@ -76,26 +80,16 @@ void setup(){
|
|||
}
|
||||
|
||||
void adalight(){
|
||||
// Dirty trick: the circular buffer for serial data is 256 bytes,
|
||||
// and the "in" and "out" indices are unsigned 8-bit types -- this
|
||||
// much simplifies the cases where in/out need to "wrap around" the
|
||||
// beginning/end of the buffer. Otherwise there'd be a ton of bit-
|
||||
// masking and/or conditional code every time one of these indices
|
||||
// needs to change, slowing things down tremendously.
|
||||
|
||||
uint8_t
|
||||
buffer[256],
|
||||
indexIn = 0,
|
||||
indexOut = 0,
|
||||
mode = MODE_HEADER,
|
||||
hi, lo, chk, i;
|
||||
mode = MODE_HEADER,
|
||||
headPos,
|
||||
hi, lo, chk;
|
||||
int16_t
|
||||
c;
|
||||
uint16_t
|
||||
bytesBuffered = 0;
|
||||
uint32_t
|
||||
bytesRemaining,
|
||||
outPos;
|
||||
uint32_t
|
||||
bytesRemaining;
|
||||
unsigned long
|
||||
lastByteTime,
|
||||
lastAckTime,
|
||||
|
@ -113,11 +107,69 @@ void adalight(){
|
|||
// Implementation is a simple finite-state machine.
|
||||
// Regardless of mode, check for serial input each time:
|
||||
t = millis();
|
||||
if((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
|
||||
buffer[indexIn++] = c;
|
||||
bytesBuffered++;
|
||||
|
||||
if((c = Serial.read()) >= 0){
|
||||
lastByteTime = lastAckTime = t; // Reset timeout counters
|
||||
}
|
||||
|
||||
switch(mode) {
|
||||
|
||||
case MODE_HEADER:
|
||||
|
||||
if(headPos < MAGICSIZE){
|
||||
if(c == magic[headPos]) headPos++;
|
||||
else headPos = 0;
|
||||
}
|
||||
else{
|
||||
switch(headPos){
|
||||
case HICHECK:
|
||||
hi = c;
|
||||
headPos++;
|
||||
break;
|
||||
case LOCHECK:
|
||||
lo = c;
|
||||
headPos++;
|
||||
break;
|
||||
case CHECKSUM:
|
||||
chk = c;
|
||||
if(chk == (hi ^ lo ^ 0x55)) {
|
||||
// Checksum looks valid. Get 16-bit LED count, add 1
|
||||
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
|
||||
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
|
||||
outPos = 0;
|
||||
memset(leds, 0, Num_Leds * sizeof(struct CRGB));
|
||||
mode = MODE_DATA; // Proceed to latch wait mode
|
||||
}
|
||||
headPos = 0; // Reset header position regardless of checksum result
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case MODE_DATA:
|
||||
|
||||
if(bytesRemaining > 0) {
|
||||
if (outPos < sizeof(leds)){
|
||||
#ifdef CALIBRATE
|
||||
if(outPos < 3)
|
||||
ledsRaw[outPos++] = c;
|
||||
else{
|
||||
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
|
||||
outPos++;
|
||||
}
|
||||
#else
|
||||
ledsRaw[outPos++] = c; // Issue next byte
|
||||
#endif
|
||||
}
|
||||
bytesRemaining--;
|
||||
}
|
||||
if(bytesRemaining == 0) {
|
||||
// End of data -- issue latch:
|
||||
mode = MODE_HEADER; // Begin next header search
|
||||
FastLED.show();
|
||||
}
|
||||
break;
|
||||
} // end switch
|
||||
} // end serial if
|
||||
else {
|
||||
// No data received. If this persists, send an ACK packet
|
||||
// to host once every second to alert it to our presence.
|
||||
|
@ -131,66 +183,7 @@ void adalight(){
|
|||
FastLED.show();
|
||||
lastByteTime = t; // Reset counter
|
||||
}
|
||||
}
|
||||
|
||||
switch(mode) {
|
||||
|
||||
case MODE_HEADER:
|
||||
|
||||
// In header-seeking mode. Is there enough data to check?
|
||||
if(bytesBuffered >= HEADERSIZE) {
|
||||
// Indeed. Check for a 'magic word' match.
|
||||
for(i=0; (i<MAGICSIZE) && (buffer[indexOut++] == magic[i++]););
|
||||
if(i == MAGICSIZE) {
|
||||
// Magic word matches. Now how about the checksum?
|
||||
hi = buffer[indexOut++];
|
||||
lo = buffer[indexOut++];
|
||||
chk = buffer[indexOut++];
|
||||
if(chk == (hi ^ lo ^ 0x55)) {
|
||||
// Checksum looks valid. Get 16-bit LED count, add 1
|
||||
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
|
||||
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
|
||||
bytesBuffered -= 3;
|
||||
outPos = 0;
|
||||
memset(leds, 0, Num_Leds * sizeof(struct CRGB));
|
||||
mode = MODE_DATA; // Proceed to latch wait mode
|
||||
}
|
||||
else {
|
||||
// Checksum didn't match; search resumes after magic word.
|
||||
indexOut -= 3; // Rewind
|
||||
}
|
||||
} // else no header match. Resume at first mismatched byte.
|
||||
bytesBuffered -= i;
|
||||
}
|
||||
break;
|
||||
|
||||
case MODE_DATA:
|
||||
|
||||
if(bytesRemaining > 0) {
|
||||
if(bytesBuffered > 0) {
|
||||
if (outPos < sizeof(leds)){
|
||||
#ifdef CALIBRATE
|
||||
if(outPos < 3)
|
||||
ledsRaw[outPos++] = buffer[indexOut];
|
||||
else{
|
||||
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
|
||||
outPos++;
|
||||
}
|
||||
#else
|
||||
ledsRaw[outPos++] = buffer[indexOut]; // Issue next byte
|
||||
#endif
|
||||
}
|
||||
indexOut++;
|
||||
bytesBuffered--;
|
||||
bytesRemaining--;
|
||||
}
|
||||
}
|
||||
else {
|
||||
// End of data -- issue latch:
|
||||
mode = MODE_HEADER; // Begin next header search
|
||||
FastLED.show();
|
||||
}
|
||||
} // end switch
|
||||
} // end else
|
||||
} // end for(;;)
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue