Adalight-FastLED_rgbwMod/Processing/Adalight_CircuitPlayground/Adalight_CircuitPlayground.pde

300 lines
12 KiB
Text
Raw Normal View History

// IMPORTANT: change 'serialPortIndex' to make this work on your system.
// This is a slightly pared-down version of Adalight specifically for
// Circuit Playground, configured for a single screen and 10 LEDs.
// "Adalight" is a do-it-yourself facsimile of the Philips Ambilight concept
// for desktop computers and home theater PCs. This is the host PC-side code
// written in Processing, intended for use with a USB-connected Circuit
// Playground microcontroller running the accompanying LED streaming code.
// Screen capture adapted from code by Cedrik Kiefer (processing.org forum)
// --------------------------------------------------------------------
// This file is part of Adalight.
// Adalight is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
// Adalight is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public
// License along with Adalight. If not, see
// <http://www.gnu.org/licenses/>.
// --------------------------------------------------------------------
import java.awt.*;
import java.awt.image.*;
import processing.serial.*;
// CONFIGURABLE PROGRAM CONSTANTS --------------------------------------------
// This selects from the list of serial devices connected to the system.
// Use print(Serial.list()); to get a list of ports. Then, counting from 0,
// set this value to the index corresponding to the Circuit Playground port:
static final byte serialPortIndex = 2;
// For multi-screen systems, set this to the index (counting from 0) of the
// display which will have ambient lighting:
static final byte screenNumber = 0;
// Minimum LED brightness; some users prefer a small amount of backlighting
// at all times, regardless of screen content. Higher values are brighter,
// or set to 0 to disable this feature.
static final short minBrightness = 100;
// LED transition speed; it's sometimes distracting if LEDs instantaneously
// track screen contents (such as during bright flashing sequences), so this
// feature enables a gradual fade to each new LED state. Higher numbers yield
// slower transitions (max of 255), or set to 0 to disable this feature
// (immediate transition of all LEDs).
static final short fade = 60;
// Depending on many factors, it may be faster either to capture full
// screens and process only the pixels needed, or to capture multiple
// smaller sub-blocks bounding each region to be processed. Try both,
// look at the reported frame rates in the Processing output console,
// and run with whichever works best for you.
static final boolean useFullScreenCaps = true;
// PER-LED INFORMATION -------------------------------------------------------
// The Circuit Playground version of Adalight operates on a fixed 5x5 grid
// encompassing the full display. 10 elements from this grid correspond to
// the 10 NeoPixels on the Circuit Playground board. The following array
// contains the 2D coordinates of each NeoPixel within that 5x5 grid (0,0 is
// top left); board assumed facing away from display, with USB at bottom:
// .4.5.
// 3...6
// 2...7
// 1...8
// .0.9.
static final int leds[][] = new int[][] {
{1,4}, {0,3}, {0,2}, {0,1}, {1,0},
{3,0}, {4,1}, {4,2}, {4,3}, {3,4}
};
// GLOBAL VARIABLES ---- You probably won't need to modify any of this -------
byte serialData[] = new byte[6 + leds.length * 3],
gamma[][] = new byte[256][3];
short[][] ledColor = new short[leds.length][3],
prevColor = new short[leds.length][3];
Robot bot;
Rectangle dispBounds, ledBounds[];
int pixelOffset[][] = new int[leds.length][256],
screenData[];
PImage preview;
Serial port;
// INITIALIZATION ------------------------------------------------------------
void setup() {
GraphicsEnvironment ge;
GraphicsConfiguration[] gc;
GraphicsDevice[] gd;
int i, row, col;
int[] x = new int[16], y = new int[16];
float f, range, step, start;
this.registerMethod("dispose", this);
print(Serial.list()); // Show list of serial devices/ports
// Open serial port. Change serialPortIndex in the globals to
// select a different port:
port = new Serial(this, Serial.list()[serialPortIndex], 38400);
// Initialize screen capture code for the display's dimensions.
if(useFullScreenCaps == false) ledBounds = new Rectangle[leds.length];
ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
gd = ge.getScreenDevices();
try {
bot = new Robot(gd[screenNumber]);
}
catch(AWTException e) {
System.out.println("new Robot() failed");
exit();
}
gc = gd[screenNumber].getConfigurations();
dispBounds = gc[0].getBounds();
dispBounds.x = dispBounds.y = 0;
preview = createImage(5, 5, RGB);
preview.loadPixels();
// Precompute locations of every pixel to read when downsampling.
// Saves a bunch of math on each frame, at the expense of a chunk
// of RAM. Number of samples is now fixed at 256; this allows for
// some crazy optimizations in the downsampling code.
for(i=0; i<leds.length; i++) { // For each LED...
// Precompute columns, rows of each sampled point for this LED
range = (float)dispBounds.width / 5.0;
step = range / 16.0;
start = range * (float)leds[i][0] + step * 0.5;
for(col=0; col<16; col++) x[col] = (int)(start + step * (float)col);
range = (float)dispBounds.height / 5.0;
step = range / 16.0;
start = range * (float)leds[i][1] + step * 0.5;
for(row=0; row<16; row++) y[row] = (int)(start + step * (float)row);
if(useFullScreenCaps == true) {
// Get offset to each pixel within full screen capture
for(row=0; row<16; row++) {
for(col=0; col<16; col++) {
pixelOffset[i][row * 16 + col] =
y[row] * dispBounds.width + x[col];
}
}
} else {
// Calc min bounding rect for LED, get offset to each pixel within
ledBounds[i] = new Rectangle(x[0], y[0], x[15]-x[0]+1, y[15]-y[0]+1);
for(row=0; row<16; row++) {
for(col=0; col<16; col++) {
pixelOffset[i][row * 16 + col] =
(y[row] - y[0]) * ledBounds[i].width + x[col] - x[0];
}
}
}
}
for(i=0; i<prevColor.length; i++) {
prevColor[i][0] = prevColor[i][1] = prevColor[i][2] =
minBrightness / 3;
}
size(200, 200, JAVA2D); // Preview window for 5x5 grid at 40X scale
noSmooth();
// A special header / magic word is expected by the corresponding LED
// streaming code running on the Arduino. This only needs to be initialized
// once (not in draw() loop) because the number of LEDs remains constant:
serialData[0] = 'A'; // Magic word
serialData[1] = 'd';
serialData[2] = 'a';
serialData[3] = (byte)((leds.length - 1) >> 8); // LED count high byte
serialData[4] = (byte)((leds.length - 1) & 0xff); // LED count low byte
serialData[5] = (byte)(serialData[3] ^ serialData[4] ^ 0x55); // Checksum
// Pre-compute gamma correction table for LED brightness levels:
for(i=0; i<256; i++) {
f = pow((float)i / 255.0, 2.8);
gamma[i][0] = (byte)(f * 255.0 + 0.5);
gamma[i][1] = (byte)(f * 240.0 + 0.5);
gamma[i][2] = (byte)(f * 220.0 + 0.5);
}
}
// PER_FRAME PROCESSING ------------------------------------------------------
void draw () {
BufferedImage img;
int i, j, o, c, weight, rb, g, sum, deficit, s2;
int[] pxls, offs;
if(useFullScreenCaps == true ) {
img = bot.createScreenCapture(dispBounds);
// Get location of source pixel data
screenData =
((DataBufferInt)img.getRaster().getDataBuffer()).getData();
}
weight = 257 - fade; // 'Weighting factor' for new frame vs. old
j = 6; // Serial led data follows header / magic word
// This computes a single pixel value filtered down from a rectangular
// section of the screen. While it would seem tempting to use the native
// image scaling in Processing/Java, in practice this didn't look very
// good -- either too pixelated or too blurry, no happy medium. So
// instead, a "manual" downsampling is done here. In the interest of
// speed, it doesn't actually sample every pixel within a block, just
// a selection of 256 pixels spaced within the block...the results still
// look reasonably smooth and are handled quickly enough for video.
for(i=0; i<leds.length; i++) { // For each LED...
if(useFullScreenCaps == true) {
// Get location of source data from prior full-screen capture:
pxls = screenData;
} else {
// Capture section of screen (LED bounds rect) and locate data::
img = bot.createScreenCapture(ledBounds[i]);
pxls = ((DataBufferInt)img.getRaster().getDataBuffer()).getData();
}
offs = pixelOffset[i];
rb = g = 0;
for(o=0; o<256; o++) {
c = pxls[offs[o]];
rb += c & 0x00ff00ff; // Bit trickery: R+B can accumulate in one var
g += c & 0x0000ff00;
}
// Blend new pixel value with the value from the prior frame
ledColor[i][0] = (short)((((rb >> 24) & 0xff) * weight +
prevColor[i][0] * fade) >> 8);
ledColor[i][1] = (short)(((( g >> 16) & 0xff) * weight +
prevColor[i][1] * fade) >> 8);
ledColor[i][2] = (short)((((rb >> 8) & 0xff) * weight +
prevColor[i][2] * fade) >> 8);
// Boost pixels that fall below the minimum brightness
sum = ledColor[i][0] + ledColor[i][1] + ledColor[i][2];
if(sum < minBrightness) {
if(sum == 0) { // To avoid divide-by-zero
deficit = minBrightness / 3; // Spread equally to R,G,B
ledColor[i][0] += deficit;
ledColor[i][1] += deficit;
ledColor[i][2] += deficit;
} else {
deficit = minBrightness - sum;
s2 = sum * 2;
// Spread the "brightness deficit" back into R,G,B in proportion to
// their individual contribition to that deficit. Rather than simply
// boosting all pixels at the low end, this allows deep (but saturated)
// colors to stay saturated...they don't "pink out."
ledColor[i][0] += deficit * (sum - ledColor[i][0]) / s2;
ledColor[i][1] += deficit * (sum - ledColor[i][1]) / s2;
ledColor[i][2] += deficit * (sum - ledColor[i][2]) / s2;
}
}
// Apply gamma curve and place in serial output buffer
serialData[j++] = gamma[ledColor[i][0]][0];
serialData[j++] = gamma[ledColor[i][1]][1];
serialData[j++] = gamma[ledColor[i][2]][2];
// Update pixels in preview image
preview.pixels[leds[i][1] * 5 + leds[i][0]] = 0xFF000000 |
(ledColor[i][0] << 16) | (ledColor[i][1] << 8) | ledColor[i][2];
}
if(port != null) port.write(serialData); // Issue data to Arduino
// Show live preview image
preview.updatePixels();
scale(40);
image(preview, 0, 0);
println(frameRate); // How are we doing?
// Copy LED color data to prior frame array for next pass
arraycopy(ledColor, 0, prevColor, 0, ledColor.length);
}
// CLEANUP -------------------------------------------------------------------
// The DisposeHandler is called on program exit (but before the Serial library
// is shutdown), in order to turn off the LEDs (reportedly more reliable than
// stop()). Seems to work for the window close box and escape key exit, but
// not the 'Quit' menu option. Thanks to phi.lho in the Processing forums.
void dispose() {
// Fill serialData (after header) with 0's, and issue to Arduino...
java.util.Arrays.fill(serialData, 6, serialData.length, (byte)0);
if(port != null) port.write(serialData);
}