psychose/mod_ekg_psychose/gcc/MOD-EKG_DemoSoft.c

463 lines
20 KiB
C

//*****************************************************************************
// MSP430FG439-Heart Rate Monitor Demo
//
// Description; Uses one Instrumentation Amplifier INA321 and the three
// internal opamps of the MSP430FG439
//
// Murugavel Raju
// Texas Instruments, Inc
// October 2004
// Edited by: M Morales, November 2008
// * Updated to non-depracated intrinsic functions
// * Changed spacing for legibility
// Edited by:
// Penko T. Bozhkov - Olimex LTD, 05.10.2012
// * RTC capcitors changed according to Olimex's crystall requirements
// * Olimex LCD definitions are added and heart rate is visualized at 2 places on LCD
// Built with IAR Embedded Workbench Version: 4.21
//*****************************************************************************
//*****************************************************************************
// THIS PROGRAM IS PROVIDED "AS IS". TI MAKES NO WARRANTIES OR
// REPRESENTATIONS, EITHER EXPRESS, IMPLIED OR STATUTORY,
// INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE, LACK OF VIRUSES, ACCURACY OR
// COMPLETENESS OF RESPONSES, RESULTS AND LACK OF NEGLIGENCE.
// TI DISCLAIMS ANY WARRANTY OF TITLE, QUIET ENJOYMENT, QUIET
// POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY
// INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO THE PROGRAM OR
// YOUR USE OF THE PROGRAM.
//
// IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
// CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY
// THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT
// OF THIS AGREEMENT, THE PROGRAM, OR YOUR USE OF THE PROGRAM.
// EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF
// REMOVAL OR REINSTALLATION, COMPUTER TIME, LABOR COSTS, LOSS
// OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, OR LOSS OF
// USE OR INTERRUPTION OF BUSINESS. IN NO EVENT WILL TI'S
// AGGREGATE LIABILITY UNDER THIS AGREEMENT OR ARISING OUT OF
// YOUR USE OF THE PROGRAM EXCEED FIVE HUNDRED DOLLARS
// (U.S.$500).
//
// Unless otherwise stated, the Program written and copyrighted
// by Texas Instruments is distributed as "freeware". You may,
// only under TI's copyright in the Program, use and modify the
// Program without any charge or restriction. You may
// distribute to third parties, provided that you transfer a
// copy of this license to the third party and the third party
// agrees to these terms by its first use of the Program. You
// must reproduce the copyright notice and any other legend of
// ownership on each copy or partial copy, of the Program.
//
// You acknowledge and agree that the Program contains
// copyrighted material, trade secrets and other TI proprietary
// information and is protected by copyright laws,
// international copyright treaties, and trade secret laws, as
// well as other intellectual property laws. To protect TI's
// rights in the Program, you agree not to decompile, reverse
// engineer, disassemble or otherwise translate any object code
// versions of the Program to a human-readable form. You agree
// that in no event will you alter, remove or destroy any
// copyright notice included in the Program. TI reserves all
// rights not specifically granted under this license. Except
// as specifically provided herein, nothing in this agreement
// shall be construed as conferring by implication, estoppel,
// or otherwise, upon you, any license or other right under any
// TI patents, copyrights or trade secrets.
//
// You may not use the Program in non-TI devices.
//*****************************************************************************
#include "msp430fg439.h"
#include "math.h"
//defines
#define PB_2_0 (1 << 0) // Push Button on P2.0
#define PB_2_1 (1 << 1) // Push Button on P2.1
// variables declaration
static char beats;
int i=0, first_detection=0;
long result = 0;
int Datain, Dataout, Dataout_pulse, pulseperiod, counter, heartrate;
int heartrate_buffer[] = {0,0,0,0,0,0,0,0,0,0};
int heartrate_cursor = 0, heartrate_mean;
// Lowpass FIR filter coefficients for 17 taps to filter > 30Hz
static const int coeffslp[9] = {
5225, 5175, 7255, 9453, 11595, 13507, 15016, 15983, 16315 };
// Highpass FIR filter coefficients for 17 taps to filter < 2Hz
static const int coeffshp[9] = {
-763, -1267, -1091, -1867, -1969, -2507, -2619, -2911, 29908 };
// *******************************************
// Definitions related to Olimex LCD Digits!!!!
// *******************************************
// Definitions for Olimex LCD digits 10 and 11
#define a 0x10
#define b 0x01
#define c 0x04
#define d 0x08
#define e 0x40
#define f 0x20
#define g 0x02
#define h 0x80
// Character generator definition for display digits 10 and 11
const char char_gen_10_11[] = {
a+b+c+d+e+f, // 0 Displays "0"
b+c, // 1 Displays "1"
a+b+d+e+g, // 2 Displays "2"
a+b+c+d+g, // 3 Displays "3"
b+c+f+g, // 4 Displays "4"
a+c+d+f+g, // 5 Displays "5"
a+c+d+e+f+g, // 6 Displays "6"
a+b+c, // 7 Displays "7"
a+b+c+d+e+f+g, // 8 Displays "8"
a+b+c+d+f+g, // 9 Displays "9"
};
// undefines
#undef a
#undef b
#undef c
#undef d
#undef e
#undef f
#undef g
#undef h
// Definitions for Olimex LCD digits 8 and 9
#define a 0x01
#define b 0x02
#define c 0x04
#define d 0x80
#define e 0x40
#define f 0x10
#define g 0x20
#define h 0x08
// Character generator definition for display digits 8 and 9
const char char_gen_8_9[] = {
a+b+c+d+e+f, // 0 Displays "0"
b+c, // 1 Displays "1"
a+b+d+e+g, // 2 Displays "2"
a+b+c+d+g, // 3 Displays "3"
b+c+f+g, // 4 Displays "4"
a+c+d+f+g, // 5 Displays "5"
a+c+d+e+f+g, // 6 Displays "6"
a+b+c, // 7 Displays "7"
a+b+c+d+e+f+g, // 8 Displays "8"
a+b+c+d+f+g, // 9 Displays "9"
};
// undefines
#undef a
#undef b
#undef c
#undef d
#undef e
#undef f
#undef g
#undef h
// Definitions for Olimex LCD digits 1 to 7. Here each digit definition require 2 bytes
#define a 0x0080
#define b 0x0040
#define c 0x0020
#define d 0x0010
#define e 0x2000
#define f 0x4000
#define g 0x0402
#define h 0x1000
// Character generator definition for display digits 1 to 7
const int char_gen_1_7[] = {
a+b+c+d+e+f, // 0 Displays "0"
b+c, // 1 Displays "1"
a+b+d+e+g, // 2 Displays "2"
a+b+c+d+g, // 3 Displays "3"
b+c+f+g, // 4 Displays "4"
a+c+d+f+g, // 5 Displays "5"
a+c+d+e+f+g, // 6 Displays "6"
a+b+c, // 7 Displays "7"
a+b+c+d+e+f+g, // 8 Displays "8"
a+b+c+d+f+g, // 9 Displays "9"
};
// undefines
#undef a
#undef b
#undef c
#undef d
#undef e
#undef f
#undef g
#undef h
// function prototypes
void Init(void); // Initializes device for the application
void ClearLCD(void); // Clears the LCD memory
int filterlp(int); // 17 tap lowpass FIR filter
int filterhp(int); // 17 tap highpass FIR filter
long mul16(register int x, register int y); // 16-bit signed multiplication
int itobcd(int i); // 16-bit hex to bcd conversion
// main function
int main(void)
{
Init(); // Initialize device for the application
LCDMEM[7] = 0x80; // Turn on LCD's Olimex row!!!
/*
// For debug purpose only!
for(unsigned char j=0;j<10;j++){
LCDMEM[2] = char_gen_10_11[j]; // LCD -> Digit 11
LCDMEM[3] = char_gen_10_11[j]; // LCD -> Digit 10
LCDMEM[4] = char_gen_8_9[j]; // LCD -> Digit 9
LCDMEM[5] = char_gen_8_9[j]; // LCD -> Digit 8
LCDMEM[7] = ((char)(char_gen_1_7[j]>>8)); // LCD -> Digit 7 High Byte
LCDMEM[6] = ((char)(char_gen_1_7[j]&0x00FF)); // LCD -> Digit 7 Low Byte
LCDMEM[9] = ((char)(char_gen_1_7[j]>>8)); // LCD -> Digit 6 High Byte
LCDMEM[8] = ((char)(char_gen_1_7[j]&0x00FF)); // LCD -> Digit 6 Low Byte
LCDMEM[11] = ((char)(char_gen_1_7[j]>>8)); // LCD -> Digit 5 High Byte
LCDMEM[10] = ((char)(char_gen_1_7[j]&0x00FF)); // LCD -> Digit 5 Low Byte
//LCDMEM[13] = ((char)(char_gen_1_7[j]>>8)); // LCD -> Digit 4 High Byte
//LCDMEM[12] = ((char)(char_gen_1_7[j]&0x00FF)); // LCD -> Digit 4 Low Byte
//LCDMEM[15] = ((char)(char_gen_1_7[j]>>8)); // LCD -> Digit 3 High Byte
//LCDMEM[14] = ((char)(char_gen_1_7[j]&0x00FF)); // LCD -> Digit 3 Low Byte
//LCDMEM[17] = ((char)(char_gen_1_7[j]>>8)); // LCD -> Digit 2 High Byte
//LCDMEM[16] = ((char)(char_gen_1_7[j]&0x00FF)); // LCD -> Digit 2 Low Byte
}
*/
while(1)
{
__bis_SR_register(LPM0_bits); // Enter LPM0 needed for UART TX completion
__no_operation();
Dataout = filterlp(Datain); // Lowpass FIR filter for filtering out 60Hz
Dataout_pulse = filterhp(Dataout)-128; // Highpass FIR filter to filter muscle artifacts
Dataout = Dataout >> 6; // Scale Dataout to use scope program
if(Dataout > 255) Dataout = 255; // Set boundary 255 max
if(Dataout < 0) Dataout = 0; // Set boundary 0 min
//DAC12_0DAT = Dataout; // For scope display
if( 0 ) {
TXBUF0 = Dataout; // Transmit via UART0 for Scope display
} else {
// send the data as ascii values
TXBUF0 = (Dataout / 100) + 48; // hundreds
while (!(IFG1 & UTXIFG0)); // wait for transmission
TXBUF0 = ((Dataout / 10) % 10 ) + 48; // tens
while (!(IFG1 & UTXIFG0));
TXBUF0 = ((Dataout / 1) % 10 ) + 48; // ones
while (!(IFG1 & UTXIFG0));
TXBUF0 = 32; // send a blank
while (!(IFG1 & UTXIFG0));
TXBUF0 = ((heartrate & 0xf00) >> 8) + 48;
while (!(IFG1 & UTXIFG0));
TXBUF0 = ((heartrate & 0xf0) >> 4) + 48;
while (!(IFG1 & UTXIFG0));
TXBUF0 = (heartrate & 0x0f) + 48;
while (!(IFG1 & UTXIFG0));
TXBUF0 = 10; // send a \n
}
counter++; // Debounce counter
pulseperiod++; // Pulse period counter
if (Dataout_pulse > 100) // Check if above threshold (48)
{
LCDMEM[1] = 0xF0; // Heart beat detected enable "<^>" on LCD
counter = 0; // Reset debounce counter
}
if (counter == 128) // Allow 128 sample debounce time
{
LCDMEM[1] = 0x00; // Disable "<^>" on LCD for blinking effect
beats++;
if (beats == 3)
{
beats = 0;
//heartrate_buffer[heartrate_cursor] = 50720/pulseperiod;
//heartrate_cursor++;
//heartrate_cursor = heartrate_cursor % 10;
//int ct;
//for(ct = 0; ct < 10; ct++) {
// heartrate_mean += heartrate_buffer[ct];
//}
//heartrate = itobcd(heartrate_mean / 10);
// heartrate = itobcd(30720/pulseperiod); // Calculate beat to beat heart rate per min
//heartrate = itobcd(92160/pulseperiod); // Calculate 3 beat average heart rate per min
heartrate = itobcd(50720/pulseperiod); // Calculate 3 beat average heart rate per min
//heartrate = (92160/pulseperiod); // Calculate 3 beat average heart rate per min
pulseperiod = 0; // Reset pulse period for next measurement
///*
LCDMEM[2] = char_gen_10_11[heartrate & 0x0f]; // Display current heart rate units -> LCD Digit 11
LCDMEM[3] = char_gen_10_11[(heartrate & 0xf0) >> 4]; // tens -> LCD Digit 10
LCDMEM[4] = char_gen_8_9[(heartrate & 0xf00) >> 8]; // hundreds -> LCD Digit 9
LCDMEM[7] = ((char)(char_gen_1_7[heartrate & 0x0f]>>8)); // LCD -> Digit 7 High Byte
LCDMEM[6] = ((char)(char_gen_1_7[heartrate & 0x0f]&0x00FF)); // LCD -> Digit 7 Low Byte
LCDMEM[9] = ((char)(char_gen_1_7[((heartrate & 0xf0) >> 4)]>>8)); // LCD -> Digit 6 High Byte
LCDMEM[8] = ((char)(char_gen_1_7[((heartrate & 0xf0) >> 4)]&0x00FF)); // LCD -> Digit 6 Low Byte
LCDMEM[11] = ((char)(char_gen_1_7[((heartrate & 0xf00) >> 8)]>>8)); // LCD -> Digit 5 High Byte
LCDMEM[10] = ((char)(char_gen_1_7[((heartrate & 0xf00) >> 8)]&0x00FF)); // LCD -> Digit 5 Low Byte
//*/
}
}
}
}//main
// Initialization function
void Init( void )
{
FLL_CTL0 |= XCAP10PF; // Set load capacitance for xtal
WDTCTL = WDTPW | WDTHOLD; // Disable the Watchdog
while ( LFOF & FLL_CTL0); // wait for watch crystal to stabilize
SCFQCTL = 63; // 32 x 32768 x 2 = 2.097152MHz
BTCTL = BT_fLCD_DIV128; // Set LCD frame freq = ACLK/128
// Initialize and enable LCD peripheral
ClearLCD(); // Clear LCD memory
LCDCTL = LCDSG0_3 + LCD4MUX + LCDON ; // 4mux LCD, segs0-23 enabled
// Initialize and enable GPIO ports
P1OUT = 0x00 + BIT3; // Clear P1OUT register, INA turned ON
P1DIR = 0x3f; // Unused pins as outputs, Comparator pins as inputs
P2OUT = 0x00; // Clear P2OUT register
P2DIR = 0xff; // Unused pins as outputs
P2DIR = ~(PB_2_0+PB_2_1); // P2.0 and P2.1 push buttons
P2IES = 0x00; // Interrupt edge low to high transition
P2IFG = 0x00; // Clear pending P2 interrupts
P2IE = PB_2_0 | PB_2_1; // Enable intterupts for push buttons
P3OUT = 0x00; // Clear P3OUT register
P3DIR = 0x0f; // Unused pins as outputs except P3.<4-7> -> For the new LCD's received at ~04.10.2012 this must be inputs!!
P4OUT = 0x00; // Clear P4OUT register
P4DIR = 0xff; // Unused pins as outputs
P5OUT = 0x00; // Clear P5OUT register
P5DIR = 0xff; // Unused pins as outputs
P5SEL = 0xfc; // Set Rxx and COM pins for LCD
P6OUT = 0x00; // Clear P6OUT register
P6SEL = 0xff; // P6 = Analog
// Initialize and enable UART
P2SEL|=BIT4; // P2.4 = TXD
UCTL0 |= SWRST; // UART SWRST = 1
ME1 |= UTXE0; // Enable UART0 TXD
UCTL0 |= CHAR; // 8-bit char, SWRST=1
UTCTL0 |= SSEL1; // UCLK = SMCLK
UBR00 = 18; // 115200 from 2.097152MHz
UBR10 = 0;
UMCTL0 = 0x2c; // Modulation = 0.2044
UCTL0 &= ~SWRST; // UART SWRST = 0, enable UART
IFG1 &= ~UTXIFG0;
// Initialize and enable ADC12
ADC12CTL0 = ADC12ON + SHT0_4 + REFON + REF2_5V;
// ADC12 ON, Reference = 2.5V for DAC0
ADC12CTL1 = SHP + SHS_1 + CONSEQ_2; // Use sampling timer, TA1 trigger
ADC12MCTL0 = INCH_1 + SREF_1; // Vref, channel = 1 = OA0 Out
ADC12IE = BIT0; // Enable interrupt for ADC12 MEM0
ADC12CTL0 |= ENC; // Enable conversions
// Initialize and enable Timer_A
TACTL = TASSEL0 + MC_1 + TACLR; // ACLK, Clear TAR, Up Mode
TACCTL1 = OUTMOD_2; // Set / Reset
TACCR0 = 63; // 512 samples per second
TACCR1 = 15; //
// Initialize and enable DAC12x
DAC12_0CTL = DAC12OPS + DAC12CALON + DAC12IR + DAC12AMP_2 + DAC12ENC;// DAC0 enable
DAC12_1CTL = DAC12CALON + DAC12IR + DAC12AMP_2 + DAC12ENC; // DAC1 enable
DAC12_1DAT = 0x099A; // Offset level = 1.5V for op amp bias
// Initialize and enable opamps
OA0CTL0 = OAP_1 + OAPM_1 + OAADC1; // OA0 enable power mode 1, OA0- = P6.0, 0A0+ = P6.2, OA0O = P6.1
OA0CTL1 = OARRIP; // General purpose mode, no Rail-to-Rail inputs
OA1CTL0 = OAP_3 + OAPM_1 + OAADC1; // OA1 enable power mode 1, OA1- = P6.4, OA1+ = DAC1, OA1O = P6.3
OA1CTL1 = OARRIP; // General purpose mode, no Rail-to-Rail inputs
OA2CTL0 = OAP_3 + OAPM_1 + OAADC1; // OA2 enable power mode 1, OA2+ = DAC1, OA2O = P6.5, Select inputs, power mode
OA2CTL1 = OAFC_1 + OARRIP; // Unit gain Mode, no Rail-to-Rail inputs
__enable_interrupt(); // Enable global Interrupts
} //init
void ClearLCD(void)
{
int i; //
for( i = 0; i < 20; i++){ // Clear LCDMEM
LCDMEM[i] = 0; //
}
}//clear LCD
int itobcd(int i) // Convert hex word to BCD.
{
int bcd = 0; //
char j = 0; //
while (i > 9) //
{
bcd |= ((i % 10) << j); //
i /= 10; //
j += 4;
} //
return (bcd | (i << j)); // Return converted value
}// itobcd(i)
int filterlp(int sample) // Lowpass FIR filter for EKG
{
static int buflp[32]; // Reserve 32 loactions for circular buffering
static int offsetlp = 0;
long z;
int i;
buflp[offsetlp] = sample;
z = mul16(coeffslp[8], buflp[(offsetlp - 8) & 0x1F]);
__no_operation();
for (i = 0; i < 8; i++){
z += mul16(coeffslp[i], buflp[(offsetlp - i) & 0x1F] + buflp[(offsetlp - 16 + i) & 0x1F]);
}
offsetlp = (offsetlp + 1) & 0x1F;
return z >> 15; // Return filter output
}// int filter
int filterhp(int samplehp) // Highpass FIR filter for hear rate
{
static int bufhp[32]; // Reserve 32 loactions for circular buffering
static int offsethp = 0;
long z;
int i;
bufhp[offsethp] = samplehp;
z = mul16(coeffshp[8], bufhp[(offsethp - 8) & 0x1F]);
for (i = 0; i < 8; i++){
z += mul16(coeffshp[i], bufhp[(offsethp - i) & 0x1F] + bufhp[(offsethp - 16 + i) & 0x1F]);
}
offsethp = (offsethp + 1) & 0x1F;
return z >> 15; // Return filter output
}// int filterhp
long mul16(register int x, register int y)
{
return ((long)x) * y;
}
#pragma vector = PORT2_VECTOR
__interrupt void Port2ISR (void)
{
P2IFG = 0;
}//Push buttons unused
#pragma vector = ADC_VECTOR // ADC12 ISR
__interrupt void ADC12ISR (void)
{
Datain = ADC12MEM0; // Store converted value in Datain
__bic_SR_register_on_exit(LPM0_bits); // Exit LPM0 on return
}// ADC12ISR