#include "NeoPatterns.h" NeoPatterns::NeoPatterns(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)()) : Adafruit_NeoPixel(pixels, pin, type) { OnComplete = callback; //Allocate a zero initialized block of memory big enough to hold "pixels" uint8_t. pixelR = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelG = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelB = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelR_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelG_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelB_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); setupboxs(); } void NeoPatterns::Update() { if ((millis() - lastUpdate) > Interval) // time to update { lastUpdate = millis(); switch (ActivePattern) { case RAINBOW_CYCLE: RainbowCycleUpdate(); break; case THEATER_CHASE: TheaterChaseUpdate(); break; case COLOR_WIPE: ColorWipeUpdate(); break; case SCANNER: ScannerUpdate(); break; case FADE: FadeUpdate(); break; case RANDOM_FADE: RandomFadeUpdate(); break; case RANDOM_FADE_SINGLE: RandomFadeSingleUpdate(); break; case SMOOTH: SmoothUpdate(); break; case PLASMA: PlasmaUpdate(); break; case RADAR: RadarUpdate(); break; case FILL: break; case RANDOM: break; case SHOWINPUT: ShowInputUpdate(); break; case NONE: break; default: break; } } else { delay(1); } } void NeoPatterns::Increment() { if (Direction == FORWARD) { Index++; if (Index >= TotalSteps) { Index = 0; if (OnComplete != NULL) { OnComplete(); // call the completion callback } } } else // Direction == REVERSE { --Index; if (Index <= 0) { Index = TotalSteps - 1; if (OnComplete != NULL) { OnComplete(); // call the completion callback } } } } void NeoPatterns::Reverse() { if (Direction == FORWARD) { Direction = REVERSE; Index = TotalSteps - 1; } else { Direction = FORWARD; Index = 0; } } void NeoPatterns::Stop(uint8_t interval) { Interval = interval; ActivePattern = NONE; } void NeoPatterns::None(uint8_t interval) { Interval = interval; if (ActivePattern != NONE) { clear(); show(); } ActivePattern = NONE; } /****************** Effects ******************/ void NeoPatterns::RainbowCycle(uint8_t interval, direction dir) { ActivePattern = RAINBOW_CYCLE; Interval = interval; TotalSteps = 255; Index = 0; Direction = dir; } void NeoPatterns::RainbowCycleUpdate() { for (int i = 0; i < numPixels(); i++) { setPixelColor(i, Wheel(((i * 256 / numPixels()) + Index) & 255)); } show(); Increment(); } void NeoPatterns::TheaterChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir) { ActivePattern = THEATER_CHASE; Interval = interval; TotalSteps = numPixels(); Color1 = color1; Color2 = color2; Index = 0; Direction = dir; } void NeoPatterns::TheaterChaseUpdate() { for (int i = 0; i < numPixels(); i++) { if ((i + Index) % 3 == 0) { setPixelColor(i, Color1); } else { setPixelColor(i, Color2); } } show(); Increment(); } void NeoPatterns::ColorWipe(uint32_t color, uint8_t interval, direction dir) { ActivePattern = COLOR_WIPE; Interval = interval; TotalSteps = numPixels(); Color1 = color; Index = 0; Direction = dir; } // Update the Color Wipe Pattern void NeoPatterns::ColorWipeUpdate() { setPixelColor(Index, Color1); show(); Increment(); } // Initialize for a SCANNNER void NeoPatterns::Scanner(uint32_t color1, uint8_t interval, bool colorful, bool spiral) { ActivePattern = SCANNER; Interval = interval; TotalSteps = (numPixels() - 1) * 2; Color1 = color1; Index = 0; wPos = 0; this->colorful = colorful; this->spiral = spiral; } // Update the Scanner Pattern void NeoPatterns::ScannerUpdate() { if (colorful) { Color1 = Wheel(wPos); if (wPos >= 255) { wPos = 0; } else { wPos++; } } for (int i = 0; i < numPixels(); i++) { int finalpos; if (spiral) { finalpos = numToSpiralPos(i); } else { finalpos = i; } if (i == Index) // Scan Pixel to the right { setPixelColor(finalpos, Color1); } else if (i == TotalSteps - Index) // Scan Pixel to the left { setPixelColor(finalpos, Color1); } else // Fading tail { setPixelColor(finalpos, DimColor(getPixelColor(finalpos))); } } show(); Increment(); } void NeoPatterns::Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir) { ActivePattern = FADE; Interval = interval; TotalSteps = steps; Color1 = color1; Color2 = color2; Index = 0; Direction = dir; } // Update the Fade Pattern void NeoPatterns::FadeUpdate() { // Calculate linear interpolation between Color1 and Color2 // Optimise order of operations to minimize truncation error uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps; uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps; uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps; ColorSet(Color(red, green, blue)); show(); Increment(); } void NeoPatterns::RandomFade(uint8_t interval ) { ActivePattern = RANDOM_FADE; Interval = interval; TotalSteps = 255; Index = 0; } void NeoPatterns::RandomFadeUpdate() { ColorSet(Wheel(Index)); Increment(); } void NeoPatterns::RandomFadeSingle(uint8_t interval, uint8_t speed) { ActivePattern = RANDOM_FADE_SINGLE; Interval = interval; TotalSteps = 255; Index = 0; WheelSpeed = speed; RandomBuffer(); } void NeoPatterns::RandomFadeSingleUpdate() { for (int i = 0; i < numPixels(); i++) { pixelR_buffer[i] += random(0, random(0, WheelSpeed + 1) + 1); //use buffer red channel for color wheel setPixelColor(i, Wheel(pixelR_buffer[i])); } show(); Increment(); } void NeoPatterns::RandomBuffer() { for (int i = 0; i < numPixels(); i++) { uint32_t c = Wheel(random(0, 256)); pixelR_buffer[i] = (uint8_t)(c >> 16); pixelG_buffer[i] = (uint8_t)(c >> 8); pixelB_buffer[i] = (uint8_t)c; } } void NeoPatterns::Random() { None(); // Stop all other effects ActivePattern = RANDOM; for (int i = 0; i < numPixels(); i++) { setPixelColor(i, Wheel(random(0, 256))); } show(); } void NeoPatterns::Smooth(uint8_t wheelSpeed, uint8_t smoothing, uint8_t strength, uint8_t interval) { ActivePattern = SMOOTH; Interval = interval; Index = 0; WheelSpeed = wheelSpeed; Smoothing = smoothing; Strength = strength; movingPoint_x = 3; movingPoint_y = 3; // Clear buffer (from previous or different effects) for (int i = 0; i < numPixels(); i++) { pixelR_buffer[i] = 0; pixelG_buffer[i] = 0; pixelB_buffer[i] = 0; } } void NeoPatterns::SmoothUpdate() { uint32_t c = Wheel(wPos); wPosSlow += WheelSpeed; wPos = (wPos + (wPosSlow / 10) ) % 255; wPosSlow = wPosSlow % 16; uint8_t r = (uint8_t)(c >> 16); uint8_t g = (uint8_t)(c >> 8); uint8_t b = (uint8_t)c; movingPoint_x = movingPoint_x + 8 + random(-random(0, 1 + 1), random(0, 1 + 1) + 1); movingPoint_y = movingPoint_y + 8 + random(-random(0, 1 + 1), random(0, 1 + 1) + 1); if (movingPoint_x < 8) { movingPoint_x = 8 - movingPoint_x; } else if (movingPoint_x >= 16) { movingPoint_x = 22 - movingPoint_x; } else { movingPoint_x -= 8; } if (movingPoint_y < 8) { movingPoint_y = 8 - movingPoint_y; } else if (movingPoint_y >= 16) { movingPoint_y = 22 - movingPoint_y; } else { movingPoint_y -= 8; } uint8_t startx = movingPoint_x; uint8_t starty = movingPoint_y; for (int i = 0; i < Strength; i++) { movingPoint_x = startx + 8 + random(-random(0, 2 + 1), random(0, 2 + 1) + 1); movingPoint_y = starty + 8 + random(-random(0, 2 + 1), random(0, 2 + 1) + 1); if (movingPoint_x < 8) { movingPoint_x = 8 - movingPoint_x; } else if (movingPoint_x >= 16) { movingPoint_x = 22 - movingPoint_x; } else { movingPoint_x -= 8; } if (movingPoint_y < 8) { movingPoint_y = 8 - movingPoint_y; } else if (movingPoint_y >= 16) { movingPoint_y = 22 - movingPoint_y; } else { movingPoint_y -= 8; } if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] < r) { pixelR[xyToPos(movingPoint_x, movingPoint_y)]++; } else if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] > r) { pixelR[xyToPos(movingPoint_x, movingPoint_y)]--; } if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] < g) { pixelG[xyToPos(movingPoint_x, movingPoint_y)]++; } else if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] > g) { pixelG[xyToPos(movingPoint_x, movingPoint_y)]--; } if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] < b) { pixelB[xyToPos(movingPoint_x, movingPoint_y)]++; } else if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] > b) { pixelB[xyToPos(movingPoint_x, movingPoint_y)]--; } } movingPoint_x = startx; movingPoint_y = starty; for (int i = 0; i < numPixels(); i++) { pixelR_buffer[i] = (Smoothing / 100.0) * pixelR[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelR, i, 0, 0); pixelG_buffer[i] = (Smoothing / 100.0) * pixelG[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelG, i, 0, 0); pixelB_buffer[i] = (Smoothing / 100.0) * pixelB[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelB, i, 0, 0); } for (int i = 0; i < numPixels(); i++) { pixelR[i] = pixelR_buffer[i]; pixelG[i] = pixelG_buffer[i]; pixelB[i] = pixelB_buffer[i]; setPixelColor(i, pixelR[i], pixelG[i], pixelB[i]); } show(); } // Based upon https://github.com/johncarl81/neopixelplasma void NeoPatterns::Plasma(float phase, float phaseIncrement, float colorStretch, uint8_t interval) { ActivePattern = PLASMA; Interval = interval; PlasmaPhase = phase; PlasmaPhaseIncrement = phaseIncrement; PlasmaColorStretch = colorStretch; } void NeoPatterns::PlasmaUpdate() { PlasmaPhase += PlasmaPhaseIncrement; int edge = (int)sqrt(numPixels()); // The two points move along Lissajious curves, see: http://en.wikipedia.org/wiki/Lissajous_curve // The sin() function returns values in the range of -1.0..1.0, so scale these to our desired ranges. // The phase value is multiplied by various constants; I chose these semi-randomly, to produce a nice motion. Point p1 = { (sin(PlasmaPhase * 1.000) + 1.0) * (edge / 2), (sin(PlasmaPhase * 1.310) + 1.0) * (edge / 2) }; Point p2 = { (sin(PlasmaPhase * 1.770) + 1.0) * (edge / 2), (sin(PlasmaPhase * 2.865) + 1.0) * (edge / 2) }; Point p3 = { (sin(PlasmaPhase * 0.250) + 1.0) * (edge / 2), (sin(PlasmaPhase * 0.750) + 1.0) * (edge / 2)}; byte row, col; // For each row... for ( row = 0; row < edge; row++ ) { float row_f = float(row); // Optimization: Keep a floating point value of the row number, instead of recasting it repeatedly. // For each column... for ( col = 0; col < edge; col++ ) { float col_f = float(col); // Optimization. // Calculate the distance between this LED, and p1. Point dist1 = { col_f - p1.x, row_f - p1.y }; // The vector from p1 to this LED. float distance1 = sqrt( dist1.x * dist1.x + dist1.y * dist1.y ); // Calculate the distance between this LED, and p2. Point dist2 = { col_f - p2.x, row_f - p2.y }; // The vector from p2 to this LED. float distance2 = sqrt( dist2.x * dist2.x + dist2.y * dist2.y ); // Calculate the distance between this LED, and p3. Point dist3 = { col_f - p3.x, row_f - p3.y }; // The vector from p3 to this LED. float distance3 = sqrt( dist3.x * dist3.x + dist3.y * dist3.y ); // Warp the distance with a sin() function. As the distance value increases, the LEDs will get light,dark,light,dark,etc... // You can use a cos() for slightly different shading, or experiment with other functions. Go crazy! float color_1 = distance1; // range: 0.0...1.0 float color_2 = distance2; float color_3 = distance3; float color_4 = (sin( distance1 * distance2 * PlasmaColorStretch )) + 2.0 * 0.5; // Square the color_f value to weight it towards 0. The image will be darker and have higher contrast. color_1 *= color_1 * color_4; color_2 *= color_2 * color_4; color_3 *= color_3 * color_4; color_4 *= color_4; // Scale the color up to 0..7 . Max brightness is 7. //strip.setPixelColor(col + (edge * row), strip.Color(color_4, 0, 0) ); setPixelColor(xyToPos(row, col), Color(color_1, color_2, color_3)); } } show(); } void NeoPatterns::Radar(float radarspeed,float radarthickness, uint8_t interval) { ActivePattern = RADAR; Radarspeed = radarspeed; Interval = interval; //interval time in ms Radarposition=0; Radarthickness=radarthickness; Radarfadelength=8; Radardotposition=10; Radardotbrightness=0; Radardotfadespeed=10; } void NeoPatterns::RadarUpdate() { Radarposition += Radarspeed; while (Radarposition>=20){ Radarposition-=20; } while (Radarposition<=-20){ Radarposition+=20; } for (int i=0;i<20;i++){ uint32_t c= Color(0,0,0); float angulardistance; if (Radarspeed>0){ angulardistance=Radarposition-i; if (angulardistance<0){ angulardistance+=20; } } if (angulardistance<=Radarfadelength){ uint8_t _brightness=(Radarfadelength-angulardistance)*255/Radarfadelength; c= Color (int( pow( (_brightness/255.0),2)*255.0), _brightness ,int(pow( (_brightness/255.0),2)*150.0) ); } colorCircleSegment(i, c); } if (abs(Radarposition-Radardotposition)<=1){ Radardotbrightness=255; } if (Radardotbrightness>10){ if (Radardotbrightness>=Radardotfadespeed){ Radardotbrightness-=Radardotfadespeed; }else{ Radardotbrightness=0; } colorCircleSegment(Radardotposition, Color (Radardotbrightness,0,0)); }else{ if (random(100)==0){ Radardotposition=random(0,20); //set new position } } show(); } /**** Input ****/ void NeoPatterns::ShowInput() { if (ActivePattern != SHOWINPUT) { clear(); colorBox(currentinput, Color(255, 255, 255)); show(); } ActivePattern = SHOWINPUT; } void NeoPatterns::ShowInputUpdate() { clear(); colorBox(currentinput, Color(255, 255, 255)); show(); } // setCurrentInput void NeoPatterns::setCurrentInput(uint8_t input) { currentinput = input; } /********/ /****************** Helper functions ******************/ void NeoPatterns::SetColor1(uint32_t color) { Color1 = color; } void NeoPatterns::SetColor2(uint32_t color) { Color2 = color; } // Calculate 50% dimmed version of a color (used by ScannerUpdate) uint32_t NeoPatterns::DimColor(uint32_t color) { // Shift R, G and B components one bit to the right uint32_t dimColor = Color(Red(color) >> 1, Green(color) >> 1, Blue(color) >> 1); return dimColor; } // Set all pixels to a color (synchronously) void NeoPatterns::ColorSet(uint32_t color) { for (int i = 0; i < numPixels(); i++) { setPixelColor(i, color); } show(); } void NeoPatterns::colorBox(uint8_t boxid, uint32_t c){ //color a box // for (int i=boxid*3;i<(boxid+1)*3;i++) { // setPixelColor(i, c); // } Serial.print("Coloring Box "); Serial.println(boxid); setPixelColor(boxs[boxid].left, c); setPixelColor(boxs[boxid].middle, c); setPixelColor(boxs[boxid].right, c); show(); } void NeoPatterns::setupboxs() { boxs[1].left = 55; boxs[1].middle = 56; boxs[1].right = 57; boxs[2].left = 52; boxs[2].middle = 53; boxs[2].right = 54; boxs[3].left = 49; boxs[3].middle = 50; boxs[3].right = 51; boxs[4].left = 46; boxs[4].middle = 47; boxs[4].right = 48; boxs[5].left = 43; boxs[5].middle = 44; boxs[5].right = 45; boxs[6].left = 40; boxs[6].middle = 41; boxs[6].right = 42; boxs[7].left = 33; boxs[7].middle = 38; boxs[7].right = 38; boxs[8].left = 32; boxs[8].middle = 37; boxs[8].right = 37; boxs[9].left = 31; boxs[9].middle = 36; boxs[9].right = 36; boxs[10].left = 30; boxs[10].middle = 35; boxs[10].right = 35; boxs[11].left = 29; boxs[11].middle = 28; boxs[11].right = 27; boxs[12].left = 26; boxs[12].middle = 25; boxs[12].right = 24; boxs[13].left = 23; boxs[13].middle = 22; boxs[13].right = 21; boxs[14].left = 20; boxs[14].middle = 19; boxs[14].right = 18; boxs[15].left = 17; boxs[15].middle = 16; boxs[15].right = 15; boxs[16].left = 14; boxs[16].middle = 13; boxs[16].right = 12; boxs[17].left = 11; boxs[17].middle = 10; boxs[17].right = 9; boxs[18].left = 8; boxs[18].middle = 7; boxs[18].right = 6; boxs[19].left = 5; boxs[19].middle = 4; boxs[19].right = 3; boxs[20].left = 2; boxs[20].middle = 1; boxs[20].right = 0; boxs[21].left = 69; boxs[21].middle = 68; boxs[21].right = 67; boxs[22].left = 66; boxs[22].middle = 65; boxs[22].right = 64; boxs[23].left = 63; boxs[23].middle = 62; boxs[23].right = 61; boxs[24].left = 60; boxs[24].middle = 59; boxs[24].right = 58; // Die unterste Zeile ohne Konsole boxs[0].left = 34; boxs[0].middle = 39; boxs[0].right = 39; } void NeoPatterns::colorCircleSegment(uint8_t wheelid, uint32_t c){ //color a wheel segment for (int i=0;i<6;i++) { setPixelColor(boxcircle[wheelid][i], c); } show(); } void NeoPatterns::ColorSetParameters(String parameters) { None(); ActivePattern = FILL; ColorSet(parseColor(parameters)); } // Returns the Red component of a 32-bit color uint8_t NeoPatterns::Red(uint32_t color) { return (color >> 16) & 0xFF; } // Returns the Green component of a 32-bit color uint8_t NeoPatterns::Green(uint32_t color) { return (color >> 8) & 0xFF; } // Returns the Blue component of a 32-bit color uint8_t NeoPatterns::Blue(uint32_t color) { return color & 0xFF; } // Input a value 0 to 255 to get a color value. // The colors are a transition r - g - b - back to r. uint32_t NeoPatterns::Wheel(byte WheelPos) { WheelPos = 255 - WheelPos; if (WheelPos < 85) { return Color(255 - WheelPos * 3, 0, WheelPos * 3); } else if (WheelPos < 170) { WheelPos -= 85; return Color(0, WheelPos * 3, 255 - WheelPos * 3); } else { WheelPos -= 170; return Color(WheelPos * 3, 255 - WheelPos * 3, 0); } } // Convert x y pixel position to matrix position uint8_t NeoPatterns::xyToPos(int x, int y) { if (y % 2 == 0) { return (y * (int)sqrt(numPixels()) + x); } else { return (y * (int)sqrt(numPixels()) + (((int)sqrt(numPixels())-1) - x)); } } //convert pixel number to actual 8x8 matrix position uint8_t NeoPatterns::numToPos(int num) { int x = num % (int)sqrt(numPixels()); int y = num / (int)sqrt(numPixels()); return xyToPos(x, y); } // Convert pixel number to actual 8x8 matrix position in a spiral uint8_t NeoPatterns::numToSpiralPos(int num) { int edge = (int)sqrt(numPixels()); int findx = edge - 1; // 7 int findy = 0; int stepsize = edge - 1; // initial value (0..7) int stepnumber = 0; // each "step" should be used twice int count = -1; int dir = 1; // direction: 0 = incX, 1=incY, 2=decX, 3=decY if (num < edge) { return num; // trivial } for (int i = edge; i <= num; i++) { count++; if (count == stepsize) { count = 0; // Change direction dir++; stepnumber++; if (stepnumber == 2) { stepsize -= 1; stepnumber = 0; } if (dir == 4) { dir = 0; } } switch (dir) { case 0: findx++; break; case 1: findy++; break; case 2: findx--; break; case 3: findy--; break; } } return xyToPos(findx, findy); } uint8_t NeoPatterns::getAverage(uint8_t array[], uint8_t i, int x, int y) { // TODO: This currently works only with 8x8 (64 pixel)! uint16_t sum = 0; uint8_t count = 0; if (i >= 8) { //up sum += array[i - 8]; count++; } if (i < (64 - 8)) { //down sum += array[i + 8]; count++; } if (i >= 1) { //left sum += array[i - 1]; count++; } if (i < (64 - 1)) { //right sum += array[i + 1]; count++; } return sum / count; } uint32_t NeoPatterns::parseColor(String value) { if (value.charAt(0) == '#') { //solid fill String color = value.substring(1); int number = (int) strtol( &color[0], NULL, 16); // Split them up into r, g, b values int r = number >> 16; int g = number >> 8 & 0xFF; int b = number & 0xFF; return Color(r, g, b); } return 0; } void NeoPatterns::Equalizer(uint8_t eqvalues[]){ //display equalizer (not used as "effect") //eqvalues[] of size 8, each contains a value from 0 to 8 (inclusive) setEqBar(0,eqvalues[0]); setEqBar(1,eqvalues[1]); setEqBar(2,eqvalues[2]); setEqBar(3,eqvalues[3]); setEqBar(4,eqvalues[4]); setEqBar(5,eqvalues[5]); setEqBar(6,eqvalues[6]); setEqBar(7,eqvalues[7]); setEqBar(8,eqvalues[7]); setEqBar(17,eqvalues[0]); setEqBar(16,eqvalues[1]); setEqBar(15,eqvalues[2]); setEqBar(14,eqvalues[3]); setEqBar(13,eqvalues[4]); setEqBar(12,eqvalues[5]); setEqBar(11,eqvalues[6]); setEqBar(10,eqvalues[7]); setEqBar(9,eqvalues[7]); show(); } //helper function void NeoPatterns::setEqBar(uint8_t barid,uint8_t pvalue){ //barid is the bar from ledEq array (vertical),pvalue is the amplitude for (uint8_t i=0;i<8;i++){ uint8_t ledId=ledEq[barid][i]; uint32_t backgroundColor=Color(0,0,0); if (i