esp-pixelbox/Adafruit_NeoMatrix.cpp

263 lines
8.6 KiB
C++
Raw Normal View History

/*-------------------------------------------------------------------------
Arduino library to control single and tiled matrices of WS2811- and
WS2812-based RGB LED devices such as the Adafruit NeoPixel Shield or
displays assembled from NeoPixel strips, making them compatible with
the Adafruit_GFX graphics library. Requires both the Adafruit_NeoPixel
and Adafruit_GFX libraries.
Written by Phil Burgess / Paint Your Dragon for Adafruit Industries.
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing products
from Adafruit!
-------------------------------------------------------------------------
This file is part of the Adafruit NeoMatrix library.
NeoMatrix is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
NeoMatrix is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with NeoMatrix. If not, see
<http://www.gnu.org/licenses/>.
-------------------------------------------------------------------------*/
#include <Adafruit_NeoPixel.h>
#include "Adafruit_NeoMatrix.h"
#include "gamma.h"
#ifdef __AVR__
#include <avr/pgmspace.h>
#elif defined(ESP8266)
#include <pgmspace.h>
#else
#ifndef pgm_read_byte
#define pgm_read_byte(addr) (*(const unsigned char *)(addr))
#endif
#endif
#ifndef _swap_uint16_t
#define _swap_uint16_t(a, b) { uint16_t t = a; a = b; b = t; }
#endif
// Constructor for single matrix:
Adafruit_NeoMatrix::Adafruit_NeoMatrix(int w, int h, uint8_t pin,
uint8_t matrixType, neoPixelType ledType) : Adafruit_GFX(w, h),
Adafruit_NeoPixel(w * h, pin, ledType), type(matrixType), matrixWidth(w),
matrixHeight(h), tilesX(0), tilesY(0), remapFn(NULL) { }
// Constructor for tiled matrices:
Adafruit_NeoMatrix::Adafruit_NeoMatrix(uint8_t mW, uint8_t mH, uint8_t tX,
uint8_t tY, uint8_t pin, uint8_t matrixType, neoPixelType ledType) :
Adafruit_GFX(mW * tX, mH * tY), Adafruit_NeoPixel(mW * mH * tX * tY, pin,
ledType), type(matrixType), matrixWidth(mW), matrixHeight(mH), tilesX(tX),
tilesY(tY), remapFn(NULL) { }
// Expand 16-bit input color (Adafruit_GFX colorspace) to 24-bit (NeoPixel)
// (w/gamma adjustment)
static uint32_t expandColor(uint16_t color) {
return ((uint32_t)pgm_read_byte(&gamma5[ color >> 11 ]) << 16) |
((uint32_t)pgm_read_byte(&gamma6[(color >> 5) & 0x3F]) << 8) |
pgm_read_byte(&gamma5[ color & 0x1F]);
}
// Downgrade 24-bit color to 16-bit (add reverse gamma lookup here?)
uint16_t Adafruit_NeoMatrix::Color(uint8_t r, uint8_t g, uint8_t b) {
return ((uint16_t)(r & 0xF8) << 8) |
((uint16_t)(g & 0xFC) << 3) |
(b >> 3);
}
// Pass-through is a kludge that lets you override the current drawing
// color with a 'raw' RGB (or RGBW) value that's issued directly to
// pixel(s), side-stepping the 16-bit color limitation of Adafruit_GFX.
// This is not without some limitations of its own -- for example, it
// won't work in conjunction with the background color feature when
// drawing text or bitmaps (you'll just get a solid rect of color),
// only 'transparent' text/bitmaps. Also, no gamma correction.
// Remember to UNSET the passthrough color immediately when done with
// it (call with no value)!
// Pass raw color value to set/enable passthrough
void Adafruit_NeoMatrix::setPassThruColor(uint32_t c) {
passThruColor = c;
passThruFlag = true;
}
// Call without a value to reset (disable passthrough)
void Adafruit_NeoMatrix::setPassThruColor(void) {
passThruFlag = false;
}
void Adafruit_NeoMatrix::drawPixel(int16_t x, int16_t y, uint16_t color) {
if ((x < 0) || (y < 0) || (x >= _width) || (y >= _height)) return;
int16_t t;
switch (rotation) {
case 1:
t = x;
x = WIDTH - 1 - y;
y = t;
break;
case 2:
x = WIDTH - 1 - x;
y = HEIGHT - 1 - y;
break;
case 3:
t = x;
x = y;
y = HEIGHT - 1 - t;
break;
}
int tileOffset = 0, pixelOffset;
if (remapFn) { // Custom X/Y remapping function
pixelOffset = (*remapFn)(x, y);
} else { // Standard single matrix or tiled matrices
uint8_t corner = type & NEO_MATRIX_CORNER;
uint16_t minor, major, majorScale;
if (tilesX) { // Tiled display, multiple matrices
uint16_t tile;
minor = x / matrixWidth; // Tile # X/Y; presume row major to
major = y / matrixHeight, // start (will swap later if needed)
x = x - (minor * matrixWidth); // Pixel X/Y within tile
y = y - (major * matrixHeight); // (-* is less math than modulo)
// Determine corner of entry, flip axes if needed
if (type & NEO_TILE_RIGHT) minor = tilesX - 1 - minor;
if (type & NEO_TILE_BOTTOM) major = tilesY - 1 - major;
// Determine actual major axis of tiling
if ((type & NEO_TILE_AXIS) == NEO_TILE_ROWS) {
majorScale = tilesX;
} else {
_swap_uint16_t(major, minor);
majorScale = tilesY;
}
// Determine tile number
if ((type & NEO_TILE_SEQUENCE) == NEO_TILE_PROGRESSIVE) {
// All tiles in same order
tile = major * majorScale + minor;
} else {
// Zigzag; alternate rows change direction. On these rows,
// this also flips the starting corner of the matrix for the
// pixel math later.
if (major & 1) {
corner ^= NEO_MATRIX_CORNER;
tile = (major + 1) * majorScale - 1 - minor;
} else {
tile = major * majorScale + minor;
}
}
// Index of first pixel in tile
tileOffset = tile * matrixWidth * matrixHeight;
} // else no tiling (handle as single tile)
// Find pixel number within tile
minor = x; // Presume row major to start (will swap later if needed)
major = y;
// Determine corner of entry, flip axes if needed
if (corner & NEO_MATRIX_RIGHT) minor = matrixWidth - 1 - minor;
if (corner & NEO_MATRIX_BOTTOM) major = matrixHeight - 1 - major;
// Determine actual major axis of matrix
if ((type & NEO_MATRIX_AXIS) == NEO_MATRIX_ROWS) {
majorScale = matrixWidth;
} else {
_swap_uint16_t(major, minor);
majorScale = matrixHeight;
}
// Determine pixel number within tile/matrix
if ((type & NEO_MATRIX_SEQUENCE) == NEO_MATRIX_PROGRESSIVE) {
// All lines in same order
pixelOffset = major * majorScale + minor;
} else {
// Zigzag; alternate rows change direction.
if (major & 1) pixelOffset = (major + 1) * majorScale - 1 - minor;
else pixelOffset = major * majorScale + minor;
}
}
setPixelColor(tileOffset + pixelOffset,
passThruFlag ? passThruColor : expandColor(color));
}
void Adafruit_NeoMatrix::fillScreen(uint16_t color) {
uint16_t i, n;
uint32_t c;
c = passThruFlag ? passThruColor : expandColor(color);
n = numPixels();
for (i = 0; i < n; i++) setPixelColor(i, c);
}
void Adafruit_NeoMatrix::setRemapFunction(uint16_t (*fn)(uint16_t, uint16_t)) {
remapFn = fn;
}
void Adafruit_NeoMatrix::Update() {
if (active)
{
if ((millis() - lastUpdate) > Interval) // time to update
{
lastUpdate = millis();
// Next Interval step for text scroll
Serial.print(scrolltextpos);
Serial.print(" - ");
Serial.println((8 * scrolltext.length() + 10));
scrolltextpos--;
int16_t maxpos = 8 * scrolltext.length() + 10;
if (scrolltextpos < -(maxpos)) {
Serial.println();
Serial.print(scrolltextpos);
Serial.print(" is smaller than: ");
Serial.println(-(maxpos));
scrolltextpos = width();
}
fillScreen(0);
setCursor(scrolltextpos, 0);
print(scrolltext);
show();
} else {
delay(1);
}
}
}
void Adafruit_NeoMatrix::ScrollText(String text, uint16_t interval, String color) {
Serial.print("Scrolltext triggered: ");
Serial.println(text);
active = true;
Interval = interval;
scrolltext = text;
scrolltextpos = width();
fillScreen(0);
setCursor(scrolltextpos, 0);
print(scrolltext);
if (--scrolltextpos < -(5 * scrolltext.length() + 10)) {
scrolltextpos = width();
}
show();
}
void Adafruit_NeoMatrix::None() {
active = false;
}