#include <string.h> #include <display.h> #include <sysdefs.h> #include "lpc134x.h" #include "core/ssp/ssp.h" #include "gpio/gpio.h" #include "basic/basic.h" #include "basic/config.h" #include "usb/usbmsc.h" #define DISPLAY_N1200 0 #define DISPLAY_N1600 1 /**************************************************************************/ /* Utility routines to manage nokia display */ /**************************************************************************/ uint8_t lcdBuffer[RESX*RESY_B]; uint32_t intstatus; // Caches USB interrupt state // (need to disable MSC while displaying) uint8_t displayType; #define TYPE_CMD 0 #define TYPE_DATA 1 static void lcd_select() { #if CFG_USBMSC if(usbMSCenabled){ intstatus=USB_DEVINTEN; USB_DEVINTEN=0; }; #endif /* the LCD requires 9-Bit frames */ uint32_t configReg = ( SSP_SSP0CR0_DSS_9BIT // Data size = 9-bit | SSP_SSP0CR0_FRF_SPI // Frame format = SPI | SSP_SSP0CR0_SCR_8); // Serial clock rate = 8 SSP_SSP0CR0 = configReg; gpioSetValue(RB_LCD_CS, 0); } static void lcd_deselect() { gpioSetValue(RB_LCD_CS, 1); /* reset the bus to 8-Bit frames that everyone else uses */ uint32_t configReg = ( SSP_SSP0CR0_DSS_8BIT // Data size = 8-bit | SSP_SSP0CR0_FRF_SPI // Frame format = SPI | SSP_SSP0CR0_SCR_8); // Serial clock rate = 8 SSP_SSP0CR0 = configReg; #if CFG_USBMSC if(usbMSCenabled){ USB_DEVINTEN=intstatus; }; #endif } static void lcdWrite(uint8_t cd, uint8_t data) { uint16_t frame = 0x0; frame = cd << 8; frame |= data; while ((SSP_SSP0SR & (SSP_SSP0SR_TNF_NOTFULL | SSP_SSP0SR_BSY_BUSY)) != SSP_SSP0SR_TNF_NOTFULL); SSP_SSP0DR = frame; while ((SSP_SSP0SR & (SSP_SSP0SR_BSY_BUSY|SSP_SSP0SR_RNE_NOTEMPTY)) != SSP_SSP0SR_RNE_NOTEMPTY); /* clear the FIFO */ frame = SSP_SSP0DR; } #define CS 2,1 #define SCK 2,11 #define SDA 0,9 #define RST 2,2 uint8_t lcdRead(uint8_t data) { uint32_t op211cache=IOCON_PIO2_11; uint32_t op09cache=IOCON_PIO0_9; uint32_t dircache=GPIO_GPIO2DIR; IOCON_PIO2_11=IOCON_PIO2_11_FUNC_GPIO|IOCON_PIO2_11_MODE_PULLUP; IOCON_PIO0_9=IOCON_PIO0_9_FUNC_GPIO|IOCON_PIO0_9_MODE_PULLUP; gpioSetDir(SCK, 1); uint8_t i; gpioSetDir(SDA, 1); gpioSetValue(SCK, 0); gpioSetValue(CS, 0); delayms(1); gpioSetValue(SDA, 0); gpioSetValue(SCK, 1); delayms(1); for(i=0; i<8; i++){ gpioSetValue(SCK, 0); delayms(1); if( data & 0x80 ) gpioSetValue(SDA, 1); else gpioSetValue(SDA, 0); data <<= 1; gpioSetValue(SCK, 1); delayms(1); } uint8_t ret = 0; gpioSetDir(SDA, 0); for(i=0; i<8; i++){ gpioSetValue(SCK, 0); delayms(1); ret <<= 1; ret |= gpioGetValue(SDA); gpioSetValue(SCK, 1); delayms(1); } gpioSetValue(SCK, 0); gpioSetValue(CS, 1); gpioSetDir(SDA, 1); IOCON_PIO2_11=op211cache; IOCON_PIO0_9=op09cache; GPIO_GPIO2DIR=dircache; delayms(1); return ret; } void lcdInit(void) { int id; sspInit(0, sspClockPolarity_Low, sspClockPhase_RisingEdge); gpioSetValue(RB_LCD_CS, 1); gpioSetValue(RB_LCD_RST, 1); gpioSetDir(RB_LCD_CS, gpioDirection_Output); gpioSetDir(RB_LCD_RST, gpioDirection_Output); delayms(100); gpioSetValue(RB_LCD_RST, 0); delayms(100); gpioSetValue(RB_LCD_RST, 1); delayms(100); id=lcdRead(220); // ID3 if(id==14) displayType=DISPLAY_N1600; else /* ID3 == 48 */ displayType=DISPLAY_N1200; /* Small Nokia 1200 LCD docs: * clear/ set * on 0xae / 0xaf * invert 0xa6 / 0xa7 * mirror-x 0xA0 / 0xA1 * mirror-y 0xc7 / 0xc8 * * 0x20+x contrast (0=black - 0x2e) * 0x40+x offset in rows from top (-0x7f) * 0x80+x contrast? (0=black -0x9f?) * 0xd0+x black lines from top? (-0xdf?) * */ lcd_select(); if(displayType==DISPLAY_N1200){ /* Decoded: * E2: Internal reset * AF: Display on/off: DON = 1 * A1: undefined? * A4: all on/normal: DAL = 0 * 2F: charge pump on/off: PC = 1 * B0: set y address: Y[0-3] = 0 * 10: set x address (upper bits): X[6-4] = 0 */ static uint8_t initseq[]= { 0xE2,0xAF, // Display ON 0xA1, // Mirror-X 0xA4, 0x2F, 0xB0, 0x10}; int i = 0; while(i<sizeof(initseq)){ lcdWrite(TYPE_CMD,initseq[i++]); delayms(5); // actually only needed after the first } }else{ /* displayType==DISPLAY_N1600 */ static uint8_t initseq_d[] = { /* Decoded: * CMD 36: MADCTL (argument missing!) * CMD 29: DISPON * CMD BA: Data order (1) * DAT 07: ignored? * CMD 15: undefined? * DAT 25: ignored? * DAT 3F: ignored? * CMD 11: sleep out * CMD 13: normal display mode on * CMD 37: set scroll entry point * DAT 00: scroll entry point * CMD 3A: interface pixel format * DAT 05: 16 bit/pixel * CMD 2A: column address set * DAT 0 : xs * DAT 98-1 : xe * CMD 2B: page address set * DAT 0 : ys * DAT 70-1 : ye */ 0x36, 0x29, 0xBA, 0x07, 0x15, 0x25, 0x3f, 0x11, 0x13, 0x37, 0x00, 0x3A, 0x05, 0x2A, 0, 98-1, 0x2B, 0, 70-1}; uint32_t initseq_c = ~ 0x12BA7; // command/data bitstring int i = 0; lcdWrite(TYPE_CMD,0x01); //sw reset delayms(10); while(i<sizeof(initseq_d)){ lcdWrite(initseq_c&1, initseq_d[i++]); initseq_c = initseq_c >> 1; } } lcd_deselect(); } void lcdFill(char f){ memset(lcdBuffer,f,RESX*RESY_B); #if 0 int x; for(x=0;x<RESX*RESY_B;x++) { lcdBuffer[x]=f; } #endif }; void lcdSetPixel(char x, char y, bool f){ if (x<0 || x> RESX || y<0 || y > RESY) return; char y_byte = (RESY-(y+1)) / 8; char y_off = (RESY-(y+1)) % 8; char byte = lcdBuffer[y_byte*RESX+(RESX-(x+1))]; if (f) { byte |= (1 << y_off); } else { byte &= ~(1 << y_off); } lcdBuffer[y_byte*RESX+(RESX-(x+1))] = byte; } bool lcdGetPixel(char x, char y){ char y_byte = (RESY-(y+1)) / 8; char y_off = (RESY-(y+1)) % 8; char byte = lcdBuffer[y_byte*RESX+(RESX-(x+1))]; return byte & (1 << y_off); } // Color display hepler functions static void _helper_pixel16(uint16_t color){ lcdWrite(TYPE_DATA,color>>8); lcdWrite(TYPE_DATA,color&0xFF); } static void _helper_hline(uint16_t color){ for(int cx=0;cx<98;cx++) _helper_pixel16(color); } #define COLORPACK_RGB565(r,g,b) (((r&0xF8) << 8) | ((g&0xFC)<<3) | ((b&0xF8) >> 3)) static const uint16_t COLOR_FG = COLORPACK_RGB565(0x00, 0x60, 0x00); static const uint16_t COLOR_BG = COLORPACK_RGB565(0xff, 0xff, 0xff); static const uint16_t COLOR_FRAME = COLORPACK_RGB565(0x00, 0x00, 0x80); void lcdDisplay(void) { char byte; lcd_select(); if(displayType==DISPLAY_N1200){ lcdWrite(TYPE_CMD,0xB0); lcdWrite(TYPE_CMD,0x10); lcdWrite(TYPE_CMD,0x00); uint16_t i,page; for(page=0; page<RESY_B;page++) { for(i=0; i<RESX; i++) { if (GLOBAL(lcdmirror)) byte=lcdBuffer[page*RESX+RESX-1-(i)]; else byte=lcdBuffer[page*RESX+(i)]; if (GLOBAL(lcdinvert)) byte=~byte; lcdWrite(TYPE_DATA,byte); } } } else { /* displayType==DISPLAY_N1600 */ uint16_t x,y; bool px; lcdWrite(TYPE_CMD,0x2C); //top line of the frame... _helper_hline(COLOR_FRAME); for(y=RESY;y>0;y--){ //left line of the frame _helper_pixel16(COLOR_FRAME); for(x=RESX;x>0;x--){ if(GLOBAL(lcdmirror)) px=lcdGetPixel(RESX-x+1,y-1); else px=lcdGetPixel(x-1,y-1); if((!px)^(!GLOBAL(lcdinvert))) { _helper_pixel16(COLOR_FG); /* foreground */ } else { _helper_pixel16(COLOR_BG); /* background */ } } //right line of the frame _helper_pixel16(COLOR_FRAME); } //bottom line of the frame _helper_hline(COLOR_FRAME); } lcd_deselect(); } void lcdRefresh() __attribute__ ((weak, alias ("lcdDisplay"))); inline void lcdInvert(void) { GLOBAL(lcdinvert)=!GLOBAL(lcdinvert); } void lcdSetContrast(int c) { lcd_select(); if(displayType==DISPLAY_N1200){ if(c<0x1F) lcdWrite(TYPE_CMD,0x80+c); }else{ /* displayType==DISPLAY_N1600 */ if(c<0x40) { lcdWrite(TYPE_CMD,0x25); lcdWrite(TYPE_DATA,4*c); }; } lcd_deselect(); }; void lcdSetInvert(int c) { lcd_select(); /* it doesn't harm N1600, save space */ // if(displayType==DISPLAY_N1200) lcdWrite(TYPE_CMD,(c&1)+0xa6); lcd_deselect(); }; /* deprecated */ void __attribute__((__deprecated__)) lcdToggleFlag(int flag) { if(flag==LCD_MIRRORX) GLOBAL(lcdmirror)=!GLOBAL(lcdmirror); if(flag==LCD_INVERTED) GLOBAL(lcdinvert)=!GLOBAL(lcdinvert); } void lcdShiftH(bool right, bool wrap) { uint8_t tmp; for (int yb = 0; yb<RESY_B; yb++) { if (right) { tmp = lcdBuffer[yb*RESX]; memmove(lcdBuffer + yb*RESX,lcdBuffer + yb*RESX+1 ,RESX-1); lcdBuffer[yb*RESX+(RESX-1)] = wrap?tmp:0; } else { tmp = lcdBuffer[yb*RESX+(RESX-1)]; memmove(lcdBuffer + yb*RESX+1,lcdBuffer + yb*RESX ,RESX-1); lcdBuffer[yb*RESX] = wrap?tmp:0; } } } void lcdShiftV8(bool up, bool wrap) { uint8_t tmp[RESX]; if (!up) { if (wrap) memmove(tmp, lcdBuffer, RESX); else memset(tmp,0,RESX); memmove(lcdBuffer,lcdBuffer+RESX ,RESX*(RESY_B-1)); memmove(lcdBuffer+RESX*(RESY_B-1),tmp,RESX); } else { if (wrap) memmove(tmp, lcdBuffer+RESX*(RESY_B-1), RESX); else memset(tmp,0,RESX); memmove(lcdBuffer+RESX,lcdBuffer ,RESX*(RESY_B-1)); memmove(lcdBuffer,tmp,RESX); } } void lcdShiftV(bool up, bool wrap) { uint8_t tmp[RESX]; if (up) { if (wrap) memmove(tmp,lcdBuffer+((RESY_B-1)*RESX),RESX); else memset(tmp,0,RESX); for (int x = 0; x<RESX; x++){ for (int y = RESY_B-1; y > 0; y--){ lcdBuffer[x+(y*RESX)] = (lcdBuffer[x+(y*RESX)] << 1) |( lcdBuffer[x+((y-1)*RESX)] >> 7); } lcdBuffer[x] = ( lcdBuffer[x] << 1) | ((tmp[x]>>3)&1); } } else { if (wrap) memmove(tmp,lcdBuffer,RESX); else memset(tmp,0,RESX); for (int x = 0; x<RESX; x++){ for (int y = 0; y < (RESY_B-1); y++){ lcdBuffer[x+(y*RESX)] = (lcdBuffer[x+(y*RESX)] >> 1) |( lcdBuffer[x+((y+1)*RESX)] << 7); } lcdBuffer[x+((RESY_B-1)*RESX)] = ( lcdBuffer[x+((RESY_B-1)*RESX)] >> 1) | ((tmp[x]<<3)&8); } } } void lcdShift(int x, int y, bool wrap) { bool dir=true; if(x<0){ dir=false; x=-x; }; while(x-->0) lcdShiftH(dir, wrap); if(y<0){ dir=false; y=-y; }else{ dir=true; }; while(y>=8){ y-=8; lcdShiftV8(dir, wrap); }; while(y-->0) lcdShiftV(dir, wrap); }