borgware-2d/borg_hw/borg_hw_pd1165.c

274 lines
6.2 KiB
C

#include "../config.h"
#include "../makros.h"
#include <avr/interrupt.h>
#include <avr/io.h>
#include <avr/wdt.h>
#include "borg_hw.h"
/*
// those macros get defined via menuconfig, now
// 16 columns total directly controlled, therefore 2 ports
#define COLPORT1 PORTC
#define COLDDR1 DDRC
#define COLPORT2 PORTA
#define COLDDR2 DDRA
// the other port controls the shift registers
#define ROWPORT PORTD
#define ROWDDR DDRD
// both clock and reset are connected to each shift register
// reset pin is negated
#define PIN_MCLR PD4
#define PIN_CLK PD6
// these are the individual data input pins for the shift registers
#define PIN_DATA PD7
*/
//#define COLDDR1 DDR(COLPORT1)
//#define COLDDR2 DDR(COLPORT2)
//#define ROWDDR DDR(ROWPORT)
//#define DATAPORT PORTC
#define DATADDR DDR(DATAPORT)
//#define ADDRPORT PORTA
#define ADDRDDR DDR(ADDRPORT)
//#define CTRLPORT PORTD
#define CTRLDDR DDR(CTRLPORT)
#define RDIMDDR DDR(RDIMPORT)
//#define BIT_CS0 2
//#define BIT_CS1 3
//#define BIT_CS2 4
//#define BIT_CS3 5
//#define BIT_RW 6
// buffer which holds the currently shown frame
unsigned char pixmap[NUMPLANE][NUM_ROWS][LINEBYTES];
inline void pd1165_write(uint8_t addr, uint8_t data) {
ADDRPORT = (ADDRPORT & 0xf0) | addr;
DATAPORT = data;
/*
switch (display) {
case 0:
CTRLPORT &= ~((1 << BIT_CS0) | (1 << BIT_RW));
CTRLPORT |= ((1 << BIT_CS0));
break;
case 1:
CTRLPORT &= ~((1 << BIT_CS1) | (1 << BIT_RW));
CTRLPORT |= ((1 << BIT_CS1));
break;
case 2:
CTRLPORT &= ~((1 << BIT_CS2) | (1 << BIT_RW));
CTRLPORT |= ((1 << BIT_CS2));
break;
case 3:
CTRLPORT &= ~((1 << BIT_CS3) | (1 << BIT_RW));
CTRLPORT |= ((1 << BIT_CS3));
break;
}
*/
}
/*
// display a row
inline void rowshow(unsigned char row, unsigned char plane) {
int addr = row;
// depending on the currently drawn plane, display the row for a specific
// amount of time
switch (plane) {
case 0:
OCR0 = 3;
break;
case 1:
OCR0 = 4;
break;
case 2:
OCR0 = 22;
}
uint8_t tmp, tmp1;
// output data of current row to the column drivers
#ifndef INTERLACED_ROWS
tmp = pixmap[plane][row][0];
tmp1 = pixmap[plane][row][1];
#else
row = (row>>1) + ((row & 0x01)?8:0 );
tmp = pixmap[plane][row][0];
tmp1 = pixmap[plane][row][1];
#endif
#ifdef REVERSE_COLS
tmp = (tmp >> 4) | (tmp << 4);
tmp = ((tmp & 0xcc) >> 2) | ((tmp & 0x33)<< 2); //0xcc = 11001100, 0x33 = 00110011
tmp = ((tmp & 0xaa) >> 1) | ((tmp & 0x55)<< 1); //0xaa = 10101010, 0x55 = 1010101
//COLPORT2 = tmp;
tmp = tmp1;
tmp = (tmp >> 4) | (tmp << 4);
tmp = ((tmp & 0xcc) >> 2) | ((tmp & 0x33) << 2); //0xcc = 11001100, 0x33 = 00110011
tmp = ((tmp & 0xaa) >> 1) | ((tmp & 0x55) << 1); //0xaa = 10101010, 0x55 = 1010101
//COLPORT1 = tmp;
#else
#ifdef INTERLACED_COLS
static uint8_t interlace_table[16] = {
0x00, 0x01, 0x04, 0x05, 0x10, 0x11, 0x14, 0x15,
0x40, 0x41, 0x44, 0x45, 0x50, 0x51, 0x54, 0x55
};
//COLPORT1 = interlace_table[tmp&0x0f] | (interlace_table[tmp1&0x0f]<<1);
tmp>>=4; tmp1>>=4;
//COLPORT2 = interlace_table[tmp] | (interlace_table[tmp1]<<1);
#else
//COLPORT1 = tmp;
//COLPORT2 = tmp1;
pd1165_write(row, tmp);
#endif
#endif
}
*/
// depending on the plane this interrupt gets triggered at 50 kHz, 31.25 kHz or
// 12.5 kHz
SIGNAL(SIG_OUTPUT_COMPARE0) {
static unsigned char plane = 0;
unsigned char row = 0;
// reset watchdog
wdt_reset();
// determine button status of the joystick
readButtons();
for (row = 0; row < 8; row++) {
pd1165_write(row, pixmap[plane][row][0]);
CTRLPORT &= ~((1 << BIT_CS3) | (1 << BIT_RW));
CTRLPORT |= ((1 << BIT_CS3));
pd1165_write(row, pixmap[plane][row][1]);
CTRLPORT &= ~((1 << BIT_CS2) | (1 << BIT_RW));
CTRLPORT |= ((1 << BIT_CS2));
//pd1165_write(0, row, pixmap[plane][row][0]);
//pd1165_write(1, row, pixmap[plane][row][1]);
}
for (row = 8; row < NUM_ROWS; row++) {
pd1165_write(row - 8, pixmap[plane][row][0]);
CTRLPORT &= ~((1 << BIT_CS0) | (1 << BIT_RW));
CTRLPORT |= ((1 << BIT_CS0));
pd1165_write(row - 8, pixmap[plane][row][1]);
CTRLPORT &= ~((1 << BIT_CS1) | (1 << BIT_RW));
CTRLPORT |= ((1 << BIT_CS1));
}
// depending on the currently drawn plane, display the row for a specific
// amount of time
switch (plane) {
case 0:
OCR0 = 3;
break;
case 1:
OCR0 = 4;
break;
case 2:
OCR0 = 22;
break;
}
//increment both row and plane
if (++plane == NUMPLANE) {
plane = 0;
}
}
void timer0_off() {
cli();
TCCR0 = 0x00;
sei();
}
// initialize timer which triggers the interrupt
void timer0_on() {
/* TCCR0: FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00
CS02 CS01 CS00
0 0 0 stop
0 0 1 clk
0 1 0 clk/8
0 1 1 clk/64
1 0 0 clk/256
1 0 1 clk/1024
*/
TCCR0 = 0x0D; // CTC Mode, clk/64
TCNT0 = 0; // reset timer
OCR0 = 20; // compare with this value
TIMSK = 0x02; // compare match Interrupt on
}
void timer2_on() {
/* TCCR2: FOC2 WGM20 COM21 COM20 WGM21 CS22 CS21 CS20
CS02 CS01 CS00
0 0 0 stop
0 0 1 clk
0 1 0 clk/8
0 1 1 clk/32
1 0 0 clk/64
1 0 1 clk/128
1 1 0 clk/256
1 1 1 clk/1024
Table 51. Compare Output Mode, non-PWM Mode
COM21 COM20 Description
0 0 normal port operation, OC2 disconnected.
0 1 toggle OC2 on compare match
1 0 clear OC2 on compare match
1 1 set OC2 on compare match
*/
TCCR2 = (1 << WGM21) | (1 << COM20) | 1; //CTC, OC2 toggle, clk/1
OCR2 = 92; // 80kHz clock on OC2
}
void borg_hw_init() {
CTRLDDR = (1<<BIT_CS0)|(1<<BIT_CS1)|(1<<BIT_CS2)|(1<<BIT_CS3)|(1<<BIT_RW);
CTRLPORT = (1<<BIT_CS0)|(1<<BIT_CS1)|(1<<BIT_CS2)|(1<<BIT_CS3)|(1<<BIT_RW);
DATADDR = 0xff;
ADDRDDR |= 0x0f;
CTRLPORT = (1<<BIT_CS0)|(1<<BIT_CS1)|(1<<BIT_CS2)|(1<<BIT_CS3)|(1<<BIT_RW);
pd1165_write(8, 0x10|7);
CTRLPORT &= ~((1<<BIT_CS0)|(1<<BIT_CS1)|(1<<BIT_CS2)|(1<<BIT_CS3)|(1<<BIT_RW));
CTRLPORT |= ((1<<BIT_CS0)|(1<<BIT_CS1)|(1<<BIT_CS2)|(1<<BIT_CS3));
timer0_on();
timer2_on();
DDRD |= 1 << PD7; // OC2 pin to output
RDIMPORT |= (1 << BIT_RDIM);
RDIMDDR |= (1 << BIT_RDIM);
// activate watchdog timer
wdt_reset();
wdt_enable(0x00); // 17ms watchdog
}