/** * \defgroup fixedpoint Fixed-point based animated plasma patterns. */ /*@{*/ /** * @file fpmath_patterns.c * @brief Routines for drawing patterns generated by fixed-point math functions. * @author Christian Kroll */ #include <assert.h> #include <stdint.h> #include "../config.h" #include "../pixel.h" #include "../util.h" #include "fpmath_patterns.h" #ifdef DOXYGEN /** * Low precision means that we use Q10.5 values and 16 bit types for almost * every calculation (with multiplication and division as notable exceptions * as they and their interim results utilize 32 bit). * * Use this precision mode with care as image quality will suffer * noticeably. It produces leaner and faster code, though. This mode should * not be used with resolutions higher than 16x16 as overflows are likely to * occur in interim calculations. * * Normal precision (i.e. #undef LOW_PRECISION) conforms to Q7.8 with the * ability to store every interim result as Q23.8. Most operations like * square root, sine, cosine, multiplication etc. utilize 32 bit types. */ #define FP_LOW_PRECISION #endif /* DOXYGEN */ #ifdef FP_LOW_PRECISION #undef FP_LOW_PRECISION #endif // low precision for displays where each dimension is less than or equal to 16 #if NUM_COLS <= 16 && NUM_ROWS <= 16 #define FP_LOW_PRECISION #endif #ifdef FP_LOW_PRECISION /** This is the type we expect ordinary integers to be. */ typedef int16_t ordinary_int_t; /** This is the type which we use for fixed-point values. */ typedef int16_t fixp_t; /** This type covers arguments of fixSin() and fixCos(). */ typedef int16_t fixp_trig_t; /** This type covers interim results of fixed-point operations. */ typedef uint32_t fixp_interim_t; /** This type covers interim results of the fixSqrt() function. */ typedef uint16_t ufixp_interim_t; /** Number of bits the fixSqrt() function can handle. */ #define SQRT_BITS 16 // NOTE: If you change the following values, don't forget to adapt the sine // lookup table as well! /** Multiply a number by this factor to convert it to a fixed-point value.*/ #define FIX 32 /** Number of fractional bits of a value (i.e. ceil(log_2(FIX))). */ #define FIX_FRACBITS 5 /** * The number of temporal quantization steps of the sine lookup table. It * must be a divisor of (FIX * 2 * pi) and this divisor must be divisable by * 4 itself. Approximate this value as close as possible to keep rounding * errors at a minimum. */ #define FIX_SIN_COUNT 200 /** The rounded down quotient of (FIX * 2 * pi) and FIX_SIN_COUNT */ #define FIX_SIN_DIVIDER 1 /** Type of the lookup table elements. */ typedef uint8_t lut_t; /** * Lookup table of fractional parts which model the first quarter of a * sine period. The rest of that period is calculated by mirroring those * values. These values are intended for Q5 types. */ static lut_t const fix_sine_lut[FIX_SIN_COUNT / 4] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 16, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25, 26, 26, 27, 27, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 31}; #else /** This is the type we expect ordinary integers to be. */ typedef int16_t ordinary_int_t; /** This is the type which we use for fixed-point values. */ typedef int16_t fixp_t; /** This type covers arguments of fixSin() and fixCos(). */ typedef int32_t fixp_trig_t; /** This type covers interim results of fixed-point operations. */ typedef int32_t fixp_interim_t; /** This type covers interim results of the fixSqrt() function. */ typedef uint32_t ufixp_interim_t; /** Number of bits the fixSqrt() function can handle. */ #define SQRT_BITS 32 // NOTE: If you change the following values, don't forget to adapt the sine // lookup table as well! /** Multiply a number by this factor to convert it to a fixed-point value.*/ #define FIX 256 /** Number of fractional bits of a value (i.e. ceil(log_2(FIX))). */ #define FIX_FRACBITS 8 /** * The number of temporal quantization steps of the sine lookup table. It * must be a divisor of (FIX * 2 * pi) and this divisor must be divisable by * 4 itself. Approximate this value as close as possible to keep rounding * errors at a minimum. */ #define FIX_SIN_COUNT 200 /** The rounded down quotient of (FIX * 2 * pi) and FIX_SIN_COUNT */ #define FIX_SIN_DIVIDER 8 /** Type of the lookup table elements. */ typedef uint8_t lut_t; /** * Lookup table of fractional parts which model the first quarter of a * sine period. The rest of that period is calculated by mirroring those * values. These values are intended for Q8 types. */ static lut_t const fix_sine_lut[FIX_SIN_COUNT / 4] = { 0, 9, 17, 24, 32, 40, 48, 56, 64, 72, 79, 87, 94, 102, 109, 116, 123, 130, 137, 144, 150, 157, 163, 169, 175, 181, 186, 192, 197, 202, 207, 211, 216, 220, 224, 228, 231, 235, 238, 240, 243, 245, 247, 249, 251, 252, 253, 254, 255, 255}; #endif /** The ordinary pi constant. */ #define PI 3.14159265358979323846 /** Fixed-point version of (pi / 2). */ #define FIX_PI_2 ((fixp_t)(PI * FIX / 2)) /** Fixed-point version of pi. */ #define FIX_PI ((fixp_t)(PI * FIX)) /** Fixed-point version of (2 * pi). */ #define FIX_2PI ((fixp_t)(2 * PI * FIX)) /** * Scales an ordinary integer up to its fixed-point format. * @param a An ordinary integer to be scaled up. * @return The given value in fixed-point format. */ inline static fixp_t fixScaleUp(ordinary_int_t a) { return (fixp_t)a * FIX; } /** * Scales a fixed-point value down to an ordinary integer (omitting the * fractional part). * @param a Fixed-point value to be scaled down to an integer. * @return The given value as an integer. */ inline static ordinary_int_t fixScaleDown(fixp_t const a) { return a / FIX; } /** * Multiplies two fixed-point values. * @param a A multiplicand. * @param b A multiplying factor. * @return Product of a and b. */ inline static fixp_interim_t fixMul(fixp_t const a, fixp_t const b) { return ((fixp_interim_t)a * (fixp_interim_t)b) / FIX; } /** * Divides two fixed-point values. * @param a A dividend. * @param b A divisor. * @return Quotient of a and b. */ inline static fixp_t fixDiv(fixp_interim_t const a, fixp_interim_t const b) { return (a * FIX) / b; } /** * Fixed-point variant of the sine function which receives a fixed-point angle * (radian). It uses a lookup table which models the first quarter of a full * sine period and calculates the rest from that quarter. * @param fAngle A fixed-point value in radian. * @return Result of the sine function normalized to a range from -FIX to FIX. */ static fixp_t fixSin(fixp_trig_t fAngle) { // convert given fixed-point angle to its corresponding quantization step int8_t nSign = 1; if (fAngle < 0) { // take advantage of sin(-x) == -sin(x) to avoid neg. operands for "%" fAngle = -fAngle; nSign = -1; } uint8_t nIndex = (fAngle / FIX_SIN_DIVIDER) % FIX_SIN_COUNT; // now convert that quantization step to an index of our quartered array if ((nIndex >= (FIX_SIN_COUNT / 4))) { if (nIndex < (FIX_SIN_COUNT / 2)) { nIndex = (FIX_SIN_COUNT / 2 - 1) - nIndex; } else { // an angle > PI means that we have to toggle the sign of the result nSign *= -1; if (nIndex < (FIX_SIN_COUNT - (FIX_SIN_COUNT / 4))) { nIndex = nIndex - (FIX_SIN_COUNT / 2); } else { nIndex = (FIX_SIN_COUNT - 1) - nIndex; } } } assert(nIndex < (FIX_SIN_COUNT / 4)); return ((fixp_t)fix_sine_lut[nIndex]) * nSign; } /** * Fixed-point variant of the cosine function which takes a fixed-point angle * (radian). It adds FIX_PI_2 to the given angle and consults the fixSin() * function for the final result. * @param fAngle A fixed-point value in radian. * @return Result of the cosine function normalized to a range from -FIX to FIX. */ static fixp_t fixCos(fixp_trig_t const fAngle) { return fixSin(fAngle + FIX_PI_2); } /** * Fixed-point square root algorithm as proposed by Ken Turkowski: * http://www.realitypixels.com/turk/computergraphics/FixedSqrt.pdf * @param a The radicant we want the square root of. * @return The square root of the given value. */ static fixp_t fixSqrt(ufixp_interim_t const a) { ufixp_interim_t nRoot, nRemainingHigh, nRemainingLow, nTestDiv, nCount; nRoot = 0; // clear root nRemainingHigh = 0; // clear high part of partial remainder nRemainingLow = a; // get argument into low part of partial remainder nCount = (SQRT_BITS / 2 - 1) + (FIX_FRACBITS >> 1); // load loop counter do { nRemainingHigh = (nRemainingHigh << 2) | (nRemainingLow >> (SQRT_BITS - 2)); nRemainingLow <<= 2; // get 2 bits of the argument nRoot <<= 1; // get ready for the next bit in the root nTestDiv = (nRoot << 1) + 1; // test radical if (nRemainingHigh >= nTestDiv) { nRemainingHigh -= nTestDiv; nRoot++; } } while (nCount-- != 0); return (nRoot); } /** * Calculates the distance between two points. * @param x1 x-coordinate of the first point * @param y1 y-coordinate of the first point * @param x2 x-coordinate of the second point * @param y2 y-coordinate of the second point * @return The distance between the given points. */ static fixp_t fixDist(fixp_t const x1, fixp_t const y1, fixp_t const x2, fixp_t const y2) { return fixSqrt(fixMul((x1 - x2), (x1 - x2)) + fixMul((y1 - y2), (y1 - y2))); } /** * This pointer type covers functions which return a brightness value for the * given coordinates and a "step" value. Applied to all coordinates of the * borg's display this actually results in a more or less beautiful pattern. * @param x x-coordinate * @param y y-coordinate * @param t A step value which changes for each frame, allowing for animations. * @param r A pointer to persistent data required by the pattern function. * @return The brightness value (0 < n <= NUM_PLANES) of the given coordinate. */ typedef unsigned char (*fpmath_pattern_func_t)(unsigned char const x, unsigned char const y, fixp_t const t, void *const r); /** * Draws an animated two dimensional graph for a given function f(x, y, t). * @param t_start A start value for the function's step variable. * @param t_stop A stop value for the function's step variable. * @param t_delta Value by which the function's step variable gets incremented. * @param frame_delay The frame delay in milliseconds. * @param fpPattern Function which generates a pattern depending on x, y and t. * @param r A pointer to persistent data required by the fpPattern function. */ static void fixDrawPattern(fixp_t const t_start, fixp_t const t_stop, fixp_t const t_delta, int const frame_delay, fpmath_pattern_func_t fpPattern, void *r) { // off-screen buffer unsigned char pOffScreen[NUMPLANE + 1][NUM_ROWS][LINEBYTES]; for (fixp_t t = t_start; t < t_stop; t += t_delta) { // For performance reasons the pattern is drawn to an off-screen buffer // without distributing bits of higher planes down to lower ones. This // is done afterwards when the off-screen contents are copied to the // actual frame buffer. for (unsigned char y = 0; y < NUM_ROWS; ++y) { for (unsigned char x = 0; x < (LINEBYTES * 8u); ++x) { pOffScreen[fpPattern(x, y, t, r)][y][x / 8] |= shl_table[x % 8]; } } // last byte of the frame buffer unsigned char *pPixmap = &pixmap[NUMPLANE - 1][NUM_ROWS - 1][LINEBYTES - 1]; // last byte of the off-screen buffer unsigned char *pOffscreenDistHigh = &pOffScreen[NUMPLANE][NUM_ROWS - 1][LINEBYTES - 1]; // last byte of the second last plane of the off-screen buffer unsigned char *pOffscreenDistLow = &pOffScreen[NUMPLANE - 1][NUM_ROWS - 1][LINEBYTES - 1]; // Here we transcribe the off-screen contents to the actual frame buffer // by distributing down 8 bits in parallel per iteration. We start at // the end of both buffers and move backwards through their space. while (pPixmap >= (unsigned char *)pixmap) // stop at the beginning { // actually draw off-screen contents *(pPixmap--) = *pOffscreenDistHigh; // distribute bits down to the next lower plane *(pOffscreenDistLow--) |= *pOffscreenDistHigh; // clear already drawn off-screen contents *(pOffscreenDistHigh--) = 0; } // wait a moment to ensure that the current frame is visible wait(frame_delay); } } #ifdef ANIMATION_PLASMA /** * This type maintains values relevant for the Plasma animation which need to be * persistent over consecutive invocations. * @see fixAnimPlasma() */ typedef struct fixp_plasma_s { /** * This array holds column dependent results of the first internal pattern * function. Those results only need to be calculated for the first row of * the current frame and are then reused for the remaining rows. */ fixp_t fFunc1[NUM_COLS]; /** * This value is part of the formula for the second internal pattern * function. It needs to be calculated only once per frame. */ fixp_t fFunc2CosArg; /** * This value is part of the formula for the second internal pattern * function. It needs to be calculated only once per frame. */ fixp_t fFunc2SinArg; } fixp_plasma_t; /** * Generates a plasma like pattern (sort of... four shades of grey are pretty * scarce for a neat plasma animation). This is realized by superimposing two * functions which generate independent patterns for themselves. * * The first function draws horizontally moving waves and the second function * draws zoomed-in radiating curls. Together they create a wobbly, plasma like * pattern. * * @param x x-coordinate * @param y y-coordinate * @param t A Step value which changes for each frame, allowing for animations. * @param r A pointer to persistent interim results. * @return The brightness value (0 < n <= NUM_PLANES) of the given coordinate. */ static unsigned char fixAnimPlasma(unsigned char const x, unsigned char const y, fixp_t const t, void *const r) { assert(x < NUM_COLS); assert(y < NUM_ROWS); // scaling factor static fixp_t const fPlasmaX = (2 * PI * FIX) / NUM_COLS; // reentrant data fixp_plasma_t *const p = (fixp_plasma_t *)r; if (x == 0 && y == 0) { p->fFunc2CosArg = NUM_ROWS * fixCos(t) + fixScaleUp(NUM_ROWS); p->fFunc2SinArg = NUM_COLS * fixSin(t) + fixScaleUp(NUM_COLS); } if (y == 0) { p->fFunc1[x] = fixSin(fixMul(fixScaleUp(x), fPlasmaX) + t); } fixp_t const fFunc2 = fixSin(fixMul(fixDist(fixScaleUp(x), fixScaleUp(y), p->fFunc2SinArg, p->fFunc2CosArg), fPlasmaX)); uint8_t const nRes = fixScaleDown(fixDiv(fixMul(p->fFunc1[x] + fFunc2 + fixScaleUp(2), fixScaleUp(NUMPLANE - 1)), fixScaleUp(2))); assert (nRes <= 3); return nRes; } /** * Starting point for the Plasma animation. */ void plasma(void) { fixp_plasma_t r; #ifndef __AVR__ fixDrawPattern(0, fixScaleUp(75), 0.1 * FIX, 15, fixAnimPlasma, &r); #else #ifndef FP_PLASMA_DELAY #define FP_PLASMA_DELAY 1 #endif fixDrawPattern(0, fixScaleUp(60), 0.1 * FIX, FP_PLASMA_DELAY, fixAnimPlasma, &r); #endif /* __AVR__ */ } #endif /* ANIMATION_PLASMA */ #ifdef ANIMATION_PSYCHEDELIC /** * This type maintains values relevant for the Psychedelic animation which need * to be persistent over consecutive invocations. */ typedef struct fixp_psychedelic_s { fixp_t fCos; /**< One of the column factors of the curl. */ fixp_t fSin; /**< One of the row factors of the curl. */ fixp_interim_t ft10; /**< A value involved in rotating the curl's center. */ } fixp_psychedelic_t; /** * Generates flowing circular waves with a rotating center. * @param x x-coordinate * @param y y-coordinate * @param t A step value which changes for each frame, allowing for animations. * @param r A pointer to persistent interim results. * @return The brightness value (0 < n <= NUM_PLANES) of the given coordinate. */ static unsigned char fixAnimPsychedelic(unsigned char const x, unsigned char const y, fixp_t const t, void *const r) { assert(x < NUM_COLS); assert(y < NUM_ROWS); fixp_psychedelic_t *p = (fixp_psychedelic_t *)r; if (x == 0 && y == 0) { p->fCos = NUM_COLS/2 * fixCos(t); p->fSin = NUM_ROWS/2 * fixSin(t); p->ft10 = fixMul(t, fixScaleUp(10)); } uint8_t const nResult = fixScaleDown(fixMul(fixSin((fixp_interim_t)fixDist(fixScaleUp(x), fixScaleUp(y), p->fCos, p->fSin) - p->ft10) + fixScaleUp(1), fixScaleUp(NUMPLANE - 1))); assert(nResult <= NUMPLANE); return nResult; } /** * Starting point for the Psychedelic animation. */ void psychedelic(void) { fixp_psychedelic_t r; #ifndef __AVR__ fixDrawPattern(0, fixScaleUp(75), 0.1 * FIX, 30, fixAnimPsychedelic, &r); #else #ifndef FP_PSYCHO_DELAY #define FP_PSYCHO_DELAY 15 #endif fixDrawPattern(0, fixScaleUp(60), 0.1 * FIX, FP_PSYCHO_DELAY, fixAnimPsychedelic, &r); #endif /* __AVR__ */ } #endif /* ANIMATION_PSYCHEDELIC */ /*@}*/