#include"../autoconf.h" #include <avr/interrupt.h> #include <avr/io.h> #include <avr/wdt.h> #include "borg_hw.h" /* pinout of the ribbon cable connected to the panel * (the numbering is actually upside down) * * 1-3 GND * 4 +5V for logic * 5-8 +12V * 9-10 GND * 11 CP3 * 12 CP2 * 13 CP1 * 14 /show * 15 CP4 * 16 /EO3 * 17-18 GND * 19-26 D0-D7 * * and now the right way round: * 1 D7 * 2 D6 * 3 D5 * 4 D4 * 5 D3 * 6 D2 * 7 D1 * 8 D0 * 9 GND * 10 GND * 11 /EO3 * 12 CP4 * 13 /show * 14 CP1 * 15 CP2 * 16 CP3 * 17 GND * 18 GND * 19 +12V * 20 +12V * 21 +12V * 22 +12V * 23 +5V * 24 GND * 25 GND * 26 GND * * Four 40374 latches are used. No. 1, 2 and 4 drive from the data bus to the * panel, no. 3 drives from the button outputs to the data bus. The EOs of * 1, 2 and 4 are hardwired to GND. * * The LEDs are aligned to a 12*16 matrix. The values for the LED columns are * passed to the latches via CP1 und CP2 (16 columns total). The index of the * row is passed during the deletion of "/show". * * The buttons are aligned to an 8*8 matrix. The rows get separately set to * "high" via latch 4. The columns can then be read via latch 3. */ // data port for the panel #define COLPORT PORTC #define COLDDR DDRC #define COLPIN PINC #define CTRLPORT PORTD #define CTRLDDR DDRD // pins on CTRLPORT #define PIN_EO3 PD7 #define PIN_CP4 PD2 #define PIN_SHOW PD3 #define PIN_CP1 PD4 #define PIN_CP2 PD5 #define PIN_CP3 PD6 // buffer which holds the currently shown frame unsigned char pixmap[NUMPLANE][NUM_ROWS][LINEBYTES]; volatile uint8_t keys[8]; inline void busywait() { //unsigned char i; //for(i=0; i < 20; i++){ // asm volatile("nop"); //} } // display a row inline void rowshow(unsigned char row, unsigned char plane){ CTRLPORT |= (1 << PIN_SHOW); //blank COLPORT = pixmap[plane][row][0]; busywait(); CTRLPORT |= (1 << PIN_CP1); busywait(); CTRLPORT &= ~(1 << PIN_CP1); busywait(); COLPORT = pixmap[plane][row][1]; busywait(); CTRLPORT |= (1 << PIN_CP2); busywait(); CTRLPORT &= ~(1 << PIN_CP2); busywait(); COLPORT = row; busywait(); CTRLPORT &= ~(1 << PIN_SHOW); } inline void checkkeys(uint8_t row){ static uint8_t mask; if (row == 0) { mask = 1; } else { //read keyboard cols into latch COLDDR = 0; CTRLPORT &= ~(1 << PIN_EO3); CTRLPORT |= (1 << PIN_CP3); busywait(); CTRLPORT &= ~(1 << PIN_CP3); busywait(); keys[row - 1] = COLPIN; CTRLPORT |= (1 << PIN_EO3); busywait(); COLDDR = 0xFF; } COLPORT = mask; mask <<= 1; busywait(); CTRLPORT |= (1 << PIN_CP4); busywait(); CTRLPORT &= ~(1 << PIN_CP4); } // depending on the plane this interrupt gets triggered at 50 kHz, 31.25 kHz or // 12.5 kHz ISR(TIMER0_COMP_vect) { static unsigned char plane = 0; static unsigned char row = 0; // reset watchdog wdt_reset(); // output current row according to current plane rowshow(row, plane); if( (plane == 2) && (row<9) ) checkkeys(row); // increment both row and plane if(++row == NUM_ROWS){ row = 0; if(++plane==NUMPLANE) plane=0; switch(plane){ case 0: OCR0 = 5; break; case 1: OCR0 = 12; break; case 2: OCR0 = 20; break; } } } void timer0_off(){ cli(); TCCR0 = 0x00; sei(); } // initialize timer which triggers the interrupt void timer0_on(){ /* TCCR0: FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00 CS02 CS01 CS00 0 0 0 stop 0 0 1 clk 0 1 0 clk/8 0 1 1 clk/64 1 0 0 clk/256 1 0 1 clk/1024 */ TCCR0 = 0x0C; // CTC Mode, clk/64 TCNT0 = 0; // reset timer OCR0 = 20; // compare with this value TIMSK = 0x02; // compare match Interrupt on } void borg_hw_init(){ //Pins am Zeilenport auf Ausgang CTRLPORT |= (1 << PIN_EO3) | (1 << PIN_SHOW); CTRLDDR |= (1 << PIN_EO3) | (1 << PIN_CP4) | (1 << PIN_SHOW) | (1 << PIN_CP1) | (1 << PIN_CP2) | (1 << PIN_CP3); // switch off all columns for now // switch column ports to output mode COLDDR = 0xFF; COLPORT = 0x00; timer0_on(); // activate watchdog timer wdt_reset(); wdt_enable(0x00); // 17ms watchdog }