#include #include #include #include #include "../../compat/pgmspace.h" #include "../../config.h" #include "bucket.h" #include "piece.h" /*************************** * non-interface functions * ***************************/ /** * determines if piece is either hovering or gliding * @param pBucket the bucket we want information from * @return TETRIS_BUS_HOVERING or TETRIS_BUS_GLIDING */ tetris_bucket_status_t tetris_bucket_hoverStatus(tetris_bucket_t* pBucket) { assert(pBucket != NULL); // if the piece touches the dump we ensure that the status is "gliding" if (tetris_bucket_collision(pBucket, pBucket->nColumn, pBucket->nRow + 1)) { return TETRIS_BUS_GLIDING; } // otherwise the status must be "hovering" else { return TETRIS_BUS_HOVERING; } } /**************************** * construction/destruction * ****************************/ tetris_bucket_t *tetris_bucket_construct(int8_t nWidth, int8_t nHeight) { assert((nWidth >= 4) && (nWidth <= 16)); assert((nHeight >= 4) && (nHeight <= 124)); tetris_bucket_t *pBucket = (tetris_bucket_t *)malloc(sizeof(tetris_bucket_t)); if (pBucket != NULL) { // allocating memory for dump array pBucket->dump = (uint16_t*) calloc(nHeight, sizeof(uint16_t)); if (pBucket->dump != NULL) { // setting requested attributes pBucket->nFirstTaintedRow = nHeight; pBucket->nWidth = nWidth; pBucket->nHeight = nHeight; // bit mask of a full row pBucket->nFullRow = 0xFFFF >> (16 - pBucket->nWidth); tetris_bucket_reset(pBucket); return pBucket; } else { free(pBucket); pBucket = NULL; } } return NULL; } void tetris_bucket_destruct(tetris_bucket_t *pBucket) { assert(pBucket != NULL); // if memory for the dump array has been allocated, free it if (pBucket->dump != NULL) { free(pBucket->dump); } free(pBucket); } /******************************* * bucket related functions * *******************************/ uint8_t tetris_bucket_calculateLines(uint8_t nRowMask) { uint8_t nMask = 0x0001; uint8_t nLines = 0; for (uint8_t i = 0; i < 4; ++i) { if ((nMask & nRowMask) != 0) { ++nLines; } nMask <<= 1; } return nLines; } void tetris_bucket_reset(tetris_bucket_t *pBucket) { assert(pBucket != NULL); pBucket->pPiece = NULL; pBucket->nColumn = 0; pBucket->nRow = 0; pBucket->nRowMask = 0; // clear dump if it has been allocated in memory if (pBucket->dump != NULL) { memset(pBucket->dump, 0, pBucket->nHeight * sizeof(uint16_t)); } pBucket->status = TETRIS_BUS_READY; } int8_t tetris_bucket_getPieceStartPos(tetris_piece_t *pPiece) { // set vertical start position (first piece row with matter at pos. 1) uint16_t nPieceMap = tetris_piece_getBitmap(pPiece); uint16_t nElementMask = 0xF000; int8_t nRow = -3; while ((nPieceMap & nElementMask) == 0) { ++nRow; nElementMask >>= 4; } if (nRow < 0) { ++nRow; } return nRow; } void tetris_bucket_insertPiece(tetris_bucket_t *pBucket, tetris_piece_t *pPiece, tetris_piece_t **ppOldPiece) { assert((pBucket != NULL) && (pPiece != NULL) && (ppOldPiece != NULL)); // a piece can only be inserted in state TETRIS_BUS_READY assert(pBucket->status == TETRIS_BUS_READY); // row mask is now meaningless pBucket->nRowMask = 0; // replace old piece *ppOldPiece = pBucket->pPiece; pBucket->pPiece = pPiece; // set horizontal start position (in the middle of the top line) pBucket->nColumn = (pBucket->nWidth - 2) / 2; // set vertical start position (first piece row with matter at pos. 1) pBucket->nRow = tetris_bucket_getPieceStartPos(pBucket->pPiece); // did we already collide with something? if (tetris_bucket_collision(pBucket, pBucket->nColumn, pBucket->nRow) == 1) { // game over man, game over!! pBucket->status = TETRIS_BUS_GAMEOVER; } else { // bring it on! pBucket->status = tetris_bucket_hoverStatus(pBucket); } } uint8_t tetris_bucket_collision(tetris_bucket_t *pBucket, int8_t nColumn, int8_t nRow) { // A piece is represented by 16 bits (4 bits per row where the LSB marks the // left most position). The part of the bucket which is covered by the piece // is converted to this format (including the bucket borders) so that a // simple bitwise 'AND' tells us if the piece and the dump overlap. // only allow coordinates which are within sane ranges assert(pBucket != NULL); assert((nColumn > -4) && (nColumn < pBucket->nWidth)); assert((nRow > -4) && (nRow < pBucket->nHeight)); // left and right borders uint16_t nBucketPart = 0; if (nColumn < 0) { static uint16_t const nLeftPart[] PROGMEM = {0x7777, 0x3333, 0x1111}; nBucketPart = pgm_read_word(&nLeftPart[nColumn + 3]); } else if (nColumn >= pBucket->nWidth - 3) { static uint16_t const nRightPart[] PROGMEM = {0xEEEE, 0xCCCC, 0x8888}; nBucketPart = pgm_read_word(&nRightPart[pBucket->nWidth - nColumn - 1]); } // lower border if (nRow > pBucket->nHeight - 4) { nBucketPart |= 0xFFFF << ((pBucket->nHeight - nRow) * 4); } int8_t const nStop = (nRow + 3) < pBucket->nHeight ? nRow + 3 : pBucket->nHeight - 1; // mask those blocks which are not covered by the piece uint16_t nDumpMask = nColumn >= 0 ? 0x000F << nColumn : 0x000F >> -nColumn; // value for shifting blocks to the corresponding part of the piece int8_t nShift = -nColumn + (nRow < 0 ? 4 * -nRow : 0); for (int8_t y = nRow >= 0 ? nRow : 0; y <= nStop; ++y) { uint16_t nTemp = pBucket->dump[y] & nDumpMask; nBucketPart |= nShift >= 0 ? nTemp << nShift : nTemp >> -nShift; if ((tetris_piece_getBitmap(pBucket->pPiece) & nBucketPart) != 0) { // collision return 1; } nShift += 4; } // if we reach here, no collision was detected return 0; } void tetris_bucket_advancePiece(tetris_bucket_t *pBucket) { assert(pBucket != NULL); // a piece can only be lowered if it is hovering or gliding assert ((pBucket->status == TETRIS_BUS_HOVERING) || (pBucket->status == TETRIS_BUS_GLIDING)); if (tetris_bucket_collision(pBucket, pBucket->nColumn, pBucket->nRow + 1)) { uint16_t nPiece = tetris_piece_getBitmap(pBucket->pPiece); // Is the bucket filled up? if ((pBucket->nRow < 0) && (nPiece & (0x0FFF >> ((3 + pBucket->nRow) << 2))) != 0) { pBucket->status = TETRIS_BUS_GAMEOVER; } else { // determine valid start point for dump index int8_t nStartRow = ((pBucket->nRow + 3) < pBucket->nHeight) ? (pBucket->nRow + 3) : pBucket->nHeight - 1; for (int8_t i = nStartRow; i >= pBucket->nRow; --i) { int8_t y = i - pBucket->nRow; // clear all bits of the piece we are not interested in and // align the rest to LSB uint16_t nPieceMap = (nPiece & (0x000F << (y << 2))) >> (y << 2); // shift the remaining content to the current column if (pBucket->nColumn >= 0) { nPieceMap <<= pBucket->nColumn; } else { nPieceMap >>= -pBucket->nColumn; } // embed piece in bucket pBucket->dump[i] |= nPieceMap; } // update value for the highest row with matter int8_t nPieceRow = pBucket->nRow; uint16_t nMask = 0x000F; for (int i = 0; i < 4; ++i, nMask <<= 4) { if ((nMask & nPiece) != 0) { nPieceRow += i; break; } } pBucket->nFirstTaintedRow = (pBucket->nFirstTaintedRow > nPieceRow) ? nPieceRow : pBucket->nFirstTaintedRow; // the piece has finally been docked pBucket->status = TETRIS_BUS_DOCKED; } } else { // since there is no collision the piece may continue its travel // to the ground... pBucket->nRow++; // are we gliding? pBucket->status = tetris_bucket_hoverStatus(pBucket); } } uint8_t tetris_bucket_movePiece(tetris_bucket_t *pBucket, tetris_bucket_direction_t direction) { assert(pBucket != NULL); // a piece can only be moved if it is still hovering or gliding assert((pBucket->status == TETRIS_BUS_HOVERING) || (pBucket->status == TETRIS_BUS_GLIDING)); int8_t nOffset = (direction == TETRIS_BUD_LEFT) ? -1 : 1; if (tetris_bucket_collision(pBucket, pBucket->nColumn + nOffset, pBucket->nRow) == 0) { pBucket->nColumn += nOffset; // are we gliding? pBucket->status = tetris_bucket_hoverStatus(pBucket); return 1; } return 0; } uint8_t tetris_bucket_rotatePiece(tetris_bucket_t *pBucket, tetris_piece_rotation_t rotation) { assert(pBucket != NULL); // a piece can only be rotation if it is still hovering or gliding assert((pBucket->status == TETRIS_BUS_HOVERING) || (pBucket->status == TETRIS_BUS_GLIDING)); tetris_piece_rotate(pBucket->pPiece, rotation); // does the rotated piece cause a collision? if (tetris_bucket_collision(pBucket, pBucket->nColumn, pBucket->nRow) != 0) { // in that case we revert the rotation if (rotation == TETRIS_PC_ROT_CW) { tetris_piece_rotate(pBucket->pPiece, TETRIS_PC_ROT_CCW); } else { tetris_piece_rotate(pBucket->pPiece, TETRIS_PC_ROT_CW); } return 0; } // are we gliding? pBucket->status = tetris_bucket_hoverStatus(pBucket); return 1; } void tetris_bucket_removeCompleteLines(tetris_bucket_t *pBucket) { assert(pBucket != NULL); // rows can only be removed if we are in state TETRIS_BUS_DOCKED assert(pBucket->status == TETRIS_BUS_DOCKED); // bit mask (only 4 bits) that tells us if the n-th row after the // current nRow is complete (n-th bit set to 1, LSB represents nRow itself) pBucket->nRowMask = 0; // only consider rows which are affected by the piece (from low to high) // for incomplete rows, both i and nShiftIndex will be decremented // for complete rows, only i gets decremented int8_t nLowestRow = (pBucket->nRow + 3) < pBucket->nHeight ? pBucket->nRow + 3 : pBucket->nHeight - 1; int8_t nShiftIndex = nLowestRow; for (int8_t i = nLowestRow; i >= pBucket->nFirstTaintedRow; --i) { // is current row a full row? if ((pBucket->nFullRow & pBucket->dump[i]) == pBucket->nFullRow) { // set corresponding bit for the row mask pBucket->nRowMask |= 0x01 << (i - pBucket->nRow); } else { // if nShiftIndex and i differ, the dump has to be shifted if (i < nShiftIndex) { pBucket->dump[nShiftIndex] = pBucket->dump[i]; } // if there were no completed lines within the range covered by the // piece, we don't need to look for those any further else if ((nLowestRow - i) >= 3) { break; } --nShiftIndex; } } // any completed rows removed? if (pBucket->nRowMask != 0) { // clear space from which the rows have been shifted away for (int8_t i = nShiftIndex; i >= pBucket->nFirstTaintedRow; --i) { pBucket->dump[i] = 0; } pBucket->nFirstTaintedRow = nShiftIndex + 1; } // ready to get the next piece pBucket->status = TETRIS_BUS_READY; } #ifdef GAME_BASTET int8_t tetris_bucket_predictDeepestRow(tetris_bucket_t *pBucket, tetris_piece_t *pPiece, int8_t nStartingRow, int8_t nColumn) { assert(pBucket != NULL); assert(pPiece != NULL); assert(nStartingRow >= -1 && nStartingRow < pBucket->nHeight); assert(nColumn >= -3 && nColumn < pBucket->nWidth); // exchange current piece of the bucket (to use its collision detection) tetris_piece_t *pActualPiece = pBucket->pPiece; pBucket->pPiece = pPiece; // determine empty rows of the bottom of piece which may overlap the dump uint16_t nMap = tetris_piece_getBitmap(pPiece); int8_t nOffset = 0; if ((nMap & 0xF000) != 0) nOffset = 3; else if ((nMap & 0xFF00) != 0) nOffset = 2; else if ((nMap & 0xFFF0) != 0) nOffset = 1; int8_t nRow = nStartingRow - nOffset; // check if the piece collides with the left or the right wall if ((nRow < -3) || (((nColumn < 0) || (nColumn >= pBucket->nWidth - 3)) && tetris_bucket_collision(pBucket, nColumn, nRow))) { nRow = TETRIS_BUCKET_INVALIDROW; } // determine deepest row else { while (!tetris_bucket_collision(pBucket, nColumn, nRow + 1)) { ++nRow; } if ((nRow < 0) && (((nRow + 4) * 4) << nMap)) { nRow = TETRIS_BUCKET_INVALIDROW; } } // restore actual bucket piece pBucket->pPiece = pActualPiece; return nRow; } int8_t tetris_bucket_predictCompleteLines(tetris_bucket_t *pBucket, tetris_piece_t *pPiece, int8_t nRow, int8_t nColumn) { assert(nRow > -4); int8_t nCompleteRows = 0; // bit mask of a full row uint16_t nFullRow = 0xFFFF >> (16 - pBucket->nWidth); // determine sane start and stop values for the dump's index int8_t nStartRow = ((nRow + 3) >= pBucket->nHeight) ? pBucket->nHeight - 1 : nRow + 3; int8_t nStopRow = (nRow < 0) ? 0 : nRow; uint16_t nPiece = tetris_piece_getBitmap(pPiece); for (int8_t i = nStartRow; i >= nStopRow; --i) { int8_t y = i - nRow; // clear all bits of the piece we are not interested in and align the // rest to LSB uint16_t nPieceMap = (nPiece & (0x000F << (y << 2))) >> (y << 2); // shift the remaining content to the current column if (nColumn >= 0) { nPieceMap <<= nColumn; } else { nPieceMap >>= -nColumn; } // embed piece in dump map uint16_t nDumpMap = pBucket->dump[i] | nPieceMap; // is current row a full row? if ((nFullRow & nDumpMap) == nFullRow) { ++nCompleteRows; } } return nCompleteRows; } uint16_t* tetris_bucket_predictBottomRow(tetris_bucket_iterator_t *pIt, tetris_bucket_t *pBucket, tetris_piece_t *pPiece, int8_t nRow, int8_t nColumn) { pIt->pBucket = pBucket; pIt->pPiece = pPiece; pIt->nColumn = nColumn; pIt->nCurrentRow = pBucket->nHeight - 1; pIt->nRowBuffer = 0; // determine sane start and stop values for the piece's row indices pIt->nPieceHighestRow = nRow; pIt->nPieceLowestRow = ((pIt->nPieceHighestRow + 3) < pBucket->nHeight) ? (pIt->nPieceHighestRow + 3) : pBucket->nHeight - 1; // don't return any trailing rows which are empty, so we look for a stop row pIt->nStopRow = pBucket->nFirstTaintedRow < nRow ? pBucket->nFirstTaintedRow : nRow; pIt->nStopRow = pIt->nStopRow < 0 ? 0 : pIt->nStopRow; return tetris_bucket_predictNextRow(pIt); } uint16_t* tetris_bucket_predictNextRow(tetris_bucket_iterator_t *pIt) { uint16_t nPieceMap = 0; if ((pIt->nPieceHighestRow > -4) && (pIt->nCurrentRow >= pIt->nStopRow)) { uint16_t nPiece = tetris_piece_getBitmap(pIt->pPiece); if ((pIt->nCurrentRow <= pIt->nPieceLowestRow) && (pIt->nCurrentRow >= pIt->nPieceHighestRow)) { int8_t y = pIt->nCurrentRow - pIt->nPieceHighestRow; // clear all bits of the piece we are not interested in and // align the rest to LSB nPieceMap = (nPiece & (0x000F << (y << 2))) >> (y << 2); // shift the remaining content to the current column if (pIt->nColumn >= 0) { nPieceMap <<= pIt->nColumn; } else { nPieceMap >>= -pIt->nColumn; } } pIt->nRowBuffer = pIt->pBucket->dump[pIt->nCurrentRow--] | nPieceMap; // don't return full (and therefore removed) rows if (pIt->nRowBuffer == pIt->pBucket->nFullRow) { // recursively determine next (?) row instead return tetris_bucket_predictNextRow(pIt); } // row isn't full else { return &pIt->nRowBuffer; } } else { return NULL; } } #endif /* GAME_BASTET */